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A large fraction of on-chip multicore inter-
connect traffic originates not from actual 
data transfers but from communication 
between the cores to maintain data coher-
ence. Co-locating directories near their 
shared data eliminates many interconnect 
traversals, substantially reducing power 
and energy consumption.

T o combat increasing on-chip wire delays as core 
counts and cache sizes grow, multicore architec-
tures have become more distributed. For example, 
in Intel Xeon Phi and Tilera TILE-Gx processors, 

the on-chip last-level cache is divided into multiple cache 
slices that are spread across the die area along with the 
cores.1 To facilitate data transfers and communication 
among the cores, such processors employ elaborate on-
chip interconnection networks that consume 10 to 28 
percent of a multicore chip’s power,2,3 stressing an already 
limited resource. As core counts continue to scale, the 
on-chip interconnect’s power consumption is expected 
to rise even higher.

To minimize this power consumption, researchers 
have recently proposed circuit-level techniques to im-
prove the power efficiency of the link circuitry and router 
microarchitecture,4 dynamic voltage scaling and power 
management,5 and thermal-aware routing.6 However, these 

efforts fail to consider that a significant fraction of the on-
chip interconnect traffic stems from packets that facilitate 
data coherence, rather than from packets that transfer 
shared data.

The coherence requirement is a consequence of per-
formance optimizations for on-chip data. To enable faster 
data accesses, the distributed cache slices are typically 
treated as private caches for the nearby cores, forming tiles 
with a core and a cache slice in each tile.1 These caches 
maintain data coherence through a directory-based coher-
ence protocol, wherein a distributed directory is address 
interleaved among the tiles.1 However, address interleaving 
is oblivious to data access and sharing patterns; it is often 
the case that a cache block maps to a directory in a tile 
physically located far from the accessing cores. To share 
a cache block, the sharing cores must traverse the on-chip 
interconnect multiple times to communicate with the di-
rectory, instead of communicating directly with each other. 
These unnecessary network traversals increase traffic and 
consume power and energy.

In recognition of this effect, Tilera’s TILEPro64 im-
plements a mechanism that aims to reduce directory 
coherence traffic by allowing the software to designate a 
page’s home node.7 This technique is similar to dynamic 
directories, a technique that cooperates with the operating 
system (OS) to eliminate the need to place directory entries 
on a predetermined tile.8 Although the TILEPro64 provides 
the placement mechanism, Tilera does not advocate a spe-
cific placement policy, nor does the literature contain an 
evaluation of this technique’s efficacy.
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Here, we assess the impact of dynamic directories on 
a multicore processor’s performance, power, and energy 
consumption. We demonstrate this method’s effective-
ness under a simple directory placement policy, which 
locates directory entries close to the most active sharer 
cores of the corresponding cache blocks, and compare it to 
both virtual hierarchies,9 a previously proposed technique 
that also helps with directory placement, and a scheme 
developed by Blas Cuesta and his colleagues10 that deacti-
vates coherence tracking for cache blocks within a private 
page—for simplicity, we refer to this scheme as private co-
herence deactivation (PCD).

Compared to the baseline architecture, dynamic direc-
tories reduce interconnect power and energy by up to 37.3 
percent (22.9 percent on average for scientific workloads, 
8.0 percent for MapReduce workloads), with negligible per-
formance impact and hardware overhead, and save four 
times more interconnect energy than virtual hierarchies. 
Dynamic directories exhibit the same gains on private 
pages as PCD.

ARCHITECTURE OVERVIEW
The baseline architecture is a tiled multicore wherein 

each tile consists of a processing core, private split instruc-
tion and data first-level caches, a private second-level cache 
(L2), a slice of the distributed directory, and a router.1 The 
tiles are connected through a two-dimensional folded 
torus. Without loss of generality, and similarly to most 
relevant studies, we consider a full-map distributed direc-
tory that is address interleaved among the tiles.

Address interleaving does not require a lookup to ex-
tract the directory location; all nodes can independently 
calculate it by the cache block address. However, address-
interleaved placement statically distributes the directories 
without regard to the accessing cores’ locations, leading to 
unnecessary on-chip interconnect traversals. 

Figure 1a shows a typical data-sharing traffic pattern, 
in which the directory is placed at an arbitrary node (tile 
5) oblivious to the sharing cores’ locations (tiles 1 and 
7). In this case, with tile 7 requesting data from tile 1, as 
Figure 1b shows, the directory ideally would be co-located 
with the sharer core at tile 1: this would eliminate two un-
necessary network messages and let the sharing cores 
communicate directly rather than through an intermediate 
node. Such placement is the goal of dynamic directories. 
Note that even if the data are core-private, the private tile 
still routes L2 misses to memory through the directory, 
thereby unnecessarily involving an intermediate node.

DYNAMIC DIRECTORIES
Dynamic directories, similar to the TILEPro64, reduce 

unnecessary on-chip interconnect traffic by placing 
directory entries on tiles with cores that share the corre-
sponding data. To achieve this, for every page, dynamic 
directories designate an owner tile of the directory en-
tries for the blocks in that page and store the owner ID in 
the page table. By utilizing the existing virtual-to-physical 
address translation mechanism, dynamic directories prop-
agate the directory location to all cores touching the page 
through the translation lookaside buffer (TLB).

OS support and directory placement
To access the L2 cache, a core translates the virtual ad-

dress of the data to a physical address through the TLB. 
Upon a TLB miss—for example, the first time a core ac-
cesses a page, or if the TLB entry has been evicted—the 
system locates the corresponding OS page-table entry and 
loads the address translation into the TLB.

Dynamic directories modify this process slightly. The 
first time any of the cores access a page, the OS declares 
the page private to that core—we refer to that core as the 
first accessor. This information is stored in the page table. 
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Figure 1. Data-sharing traffic patterns in the baseline multicore architecture. (a) Packet flow when tile 7 requests data from a 
block owned by tile 1, with the directory at tile 5. (b) Packet flow when the directory is co-located with the data.
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No directory entries need to be allocated for a private page, 
as there is no need to maintain coherence without sharers.

If another core accesses the page, that core will also 
miss in its TLB as it has no valid entry. Upon the TLB miss, 
the OS (or the hardware page-walk mechanism) discovers 
that a core is already accessing this page and reclassifies 
it as shared. At the same time, the first accessor becomes 
the owner of the page’s directory entries, and the system 
allocates the necessary directory entries in its tile. The 
OS records the directory location in the page table and 
communicates this to the core through the TLB fill. Thus, 
any subsequent accessor of the page is also notified of 
the location of the directory for the page’s blocks. This 
guarantees that the directory is co-located with one of the 
page’s sharer cores, and at the same time provides a simple 
mechanism to locate the directory entries.

When it reclassifies a private page as shared, the system 
must allocate directory entries for the page’s cached 
blocks. However, it does not allocate directory entries for 
private pages, so when a page becomes shared, the system 
does not know which of its blocks are cached and what 
state they are in. The only certainty is that the first acces-
sor has any of the page’s cached blocks. 

The least complex solution is to flush all of that page’s 
blocks from the first accessor’s cache, eliminating the need 
to allocate directory entries for previously cached blocks. 
From that point on, the system can allocate directory en-
tries on demand at the first accessor’s directory, as the first 
accessor remains the directory owner. Although simple, 
this solution increases the cache miss rate as well as the 
number of cache accesses to perform the cache flush, both 
of which have potentially detrimental effects on perfor-
mance, power, and energy consumption.

Alternatively, the system can conservatively allocate di-
rectory entries for all the page’s blocks and declare the first 
accessor’s cache as the owner. The system will then for-
ward all requests for this page to the first accessor, which 
can easily resolve the state of the requested blocks locally 
(both cached blocks and directory entries reside in the 
same tile). 

In either method, the first accessor remains the owner 
of the directory entries, and the OS invalidates the corre-
sponding TLB entry at the first accessor to remove the stale 
private page state (the page is now shared). For our evalua-
tion, we chose the latter option: the system conservatively 
allocates directory entries for all the page’s blocks. This 
method has negligible power and performance impact, and 

the only downside is that it might allocate more directory 
entries than absolutely necessary during the relatively rare 
reclassification events.

Dynamic directories allow cache coherence at the gran-
ularity of individual cache blocks; the OS only places the 
corresponding directory entries at some tile. The place-
ment occurs at page granularity—the system places the 
directory entries for all blocks within a page at the same 
tile. Finer-grain placement is possible but incurs signif-
icant overhead. To support placement at granularities 
smaller than a page, the TLB and page-table entries would 
need to store multiple directory owners (one per place-
ment grain), and each subsection of the page would have 
to generate a separate TLB trap to extract the directory  
location for it. However, complex fine-grain techniques are 
not justified, as granularities smaller than a page provide 
negligible energy benefits. Nonetheless, for completeness, 
we also present the energy savings of such a hypothetical 
approach.

Thread migration
When threads migrate, the corresponding direc-

tory entries could either stay in the original tile and be  
accessed remotely by the migrating thread or move along 
with the migrating thread. Dynamic directories could also 
be turned off. 

The simplest choice is to leave the directory entries in 
place and let the migrating thread access them remotely. 
This does not require any new mechanisms or structures, 
nor does it change any existing ones. Having directories 
at a remote node and accessing them via the intercon-
nect is similar to the baseline architecture. The downside 
is that directory placement might no longer be optimal, 
and the interconnect could suffer from hot spots as all the 
directory entries frequently accessed by this thread are 
concentrated at the same remote node. Thus, under this 
scheme, thread migration becomes even more expensive 
than it already is, thereby raising the importance of affinity 
scheduling. This would be the best option if threads mi-
grate away from their core only for short periods of time, 
relatively infrequently, and quickly return due to affinity 
scheduling.

The second alternative—migrate the directory entries 
together with the thread—would preserve the affin-
ity of the directory entries and the thread at the cost of 
identifying the entries to migrate, performing the actual 
migration, and resolving any races occurring during the 
directory migration. Identifying the directory entries to 
migrate is easy when a core executes only a single thread: 
all entries owned by that tile should migrate. However, a 
core that executes multiple threads through multithread-
ing or time sharing needs to tag the directory entries 
with the process/thread IDs, so the system knows exactly 
which entries to move. Performing the migration would 

Dynamic directories allow cache 
coherence at the granularity of  
individual cache blocks.
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require TLB shootdowns, as well as bandwidth and energy 
consumption on the interconnect for the actual transfer. 
Races could easily appear, as requests could arrive while 
the directory migration is in flight, and the OS would have 
to handle them successfully. Overall, this is an expen-
sive proposition, akin to traditional directory migration, 
and likely would not provide enough additional benefits 
to justify its implementation unless threads migrate to a 
new core and stay there for a very long time before mi-
grating again.

Dynamic directories can be turned off for pathological 
cases: one bit per page could indicate whether its direc-
tory entries are managed by dynamic directories or by 
traditional address interleaving. However, the moment 
that a page’s dynamic directories are turned off, the page 
would need to go through a process similar to reclassifi-
cation: the OS has to flush cached blocks from the caches 
and shoot down the corresponding TLB entries so they 
can be updated. Thus, while easy to implement, this so-
lution also comes with potentially significant overhead. 
To avoid excessive overhead, dynamic directories should 
remain switched off for the entire duration of high thread- 
migration rates. In that case, the overhead would be a one-
time event amortized over billions of accesses, and the 
scheme would perform almost identically to the baseline. 
While this would prevent dynamic directories from provid-
ing any benefit over the baseline, it would also guarantee 
that they do no harm.

We did not observe any significant migration rates in 
our workloads, hence we did not separately evaluate these 
options. However, each solution is best suited for differ-
ent conditions of migration frequency and length of stay. 
A sophisticated system could monitor these metrics and 
employ the best option each time.

Overhead
Dynamic directories extend each TLB entry by  

log2N + 1 bits, where N is the number of tiles. The Intel 
Core i7 (Sandy Bridge) has two-level TLBs, with 64 L1-TLB 
entries and 512 L2-TLB entries for a 4-Kbyte page size. For 
16-core chip multiprocessors (CMPs), dynamic directories 
add 4 bits for the directory owner and 1 bit for the shared/
private state. This amounts to only 5.63 Kbytes additional 
static RAM (SRAM). We modeled the TLB with CACTI 6.511 
and found that the energy overhead is negligible (0.7 per-
cent of the TLB read energy).

On the software side, Linux on Core i7 typically uses 
64-bit page-table entries, in which bits 9-11 and 48-62 are 
unused. These extra bits can accommodate up to 131,072 
cores and hence dynamic directories do not add any 
overhead in the page table. The only software overhead 
incurred is a few extra lines of kernel code to initialize 
the directory owner and state bits and to orchestrate page  
reclassifications when necessary.

Mechanism justification
Instead of utilizing unused page-table entry bits 

to encode the owner ID for a page’s directory entries,  
dynamic directories could designate log2N bits of the  
physical address to encode the owner tile ID. The selec-
tion of a physical frame for a virtual page would then be 
limited only to addresses that assign the correct tile ID to 
these bits.

However, this would couple the memory allocation with 
the directory placement. Limiting physical addresses to 
specific address ranges for each tile would cause memory 
fragmentation, degrade performance, and complicate 
other optimizations that pose conflicting address transla-
tion requests—for example, page coloring for L1 caches. 
Overloading the address bits within the cache index for 
directory placement would result in these bits being all 
the same for pages assigned to the same tile, thereby utiliz-

ing only a subset of the available L2 cache sets. Similarly, 
using higher address bits for directory placement might 
conflict with the bits used for dynamic RAM bank, chan-
nel, or column selection, leading to underutilization of the 
DRAM banks, memory channels, or row buffer. Moreover, 
if address bits are used for directory placement, each core 
in an N-core CMP will be able to allocate locally only 1/N 
of the overall physical pages, limiting the performance  
potential of dynamic directories if more pages are private 
to (or accessed mostly by) that core.

Dynamic directories avoid all these problems by fully 
decoupling page allocation from directory placement.

EXPERIMENTAL RESULTS
We evaluated dynamic directories by simulating a  

16-core tiled CMP running scientific workloads (a mix-
ture of compute-intensive applications and computational  
kernels) and Phoenix MapReduce workloads. We simulated 
the CMP on Flexus12 and followed the SimFlex multi- 
processor sampling methodology.13 The full details of our 
simulation methodology, the power model, and details on 
the simulated architecture and workloads appear else-
where.8 We simulated the entire execution of the Map 
phase for Phoenix applications, which constitutes the ma-
jority of execution time, and three complete iterations for 
the scientific applications.

Directory placement policy
Ideally, in the absence of directory migration, the direc-

tory entries for a page are placed at the tile that issues the 

Dynamic directories fully decouple  
page allocation from directory  
placement.
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most accesses to them. Identifying this tile, however, re-
quires complex techniques. Fortunately, the first accessor 
of a page issues on average only 6 percent fewer accesses 
than the top accessor, and it is trivial to identify. Therefore, 
dynamic directories choose to allocate a page’s directory 
entries to its first accessor.

Distribution of directory entries across tiles
Dynamic directories could skew the distribution of 

directory entries to tiles, in contrast to the uniform dis-
tribution of traditional address interleaving. If some 
tiles allocate vastly more directory entries than others, 
they might require a disproportionately large area for 
the directory or cause traffic hot spots that degrade 
performance.

Figure 2 shows the distribution of directory entries 
across the tiles for private and shared pages. There is a 
band of 16 bars for each workload, with each bar’s height 
designating how many pages have their directories al-
located at that tile. The red line indicates a hypothetical 
uniform distribution. The figure yields three key insights.

First, while the distribution of directory entries is some-
times skewed, the imbalance could be minimized. Only 
one core accesses private data, obviating the need for a 
directory. Thus, dynamic directories allocate directory en-
tries only for shared pages, reducing the on-chip directory 
capacity requirements by 48 percent on average.

Second, while the directory entries for shared pages are 
mostly evenly distributed, oversubscribed tiles still exist 
(excluding Kmeans and Fmm, a tile gets at most 18 percent 
of the directories). With dynamic directories, the system 

has the flexibility to allocate the directories to nearby tiles 
or to another sharer core when the first accessor is over-
loaded, thus spreading the load while still guaranteeing 
directory proximity to the accessing cores.

Finally, the uneven distribution of directory entries is 
not a direct indicator of increased traffic hot spots. The 
baseline might already exhibit imbalanced traffic, some 
pages are colder than others, and dynamic directories 
reduce the number of messages traversing the intercon-
nect by 22.7 percent on average, easing traffic congestion. 
While dynamic directories on Kmeans, Fmm, and Dsmc 
exacerbate existing traffic imbalances, these hot spots 
have a negligible performance impact, as the applications 
spend only a small fraction of execution time on the dis-
tributed L2 cache. In the remaining applications, a tile 
could receive on average 8 percent more directory accesses 
from remote cores compared to the baseline, but these 
imbalances are relatively small and do not impact perfor-
mance. Also, as indicated earlier, in pathological cases it 
is simple to turn off dynamic directories.

For completeness, we evaluated Kmeans and Fmm with 
a modified dynamic directories scheme, wherein the di-
rectories for the shared pages are address interleaved at 
block granularity similar to Reactive NUCA.1 This direc-
tory placement removes the hot spots that Kmeans and 
Fmm experience.

Energy savings
We evaluated the impact of dynamic directories on 

energy and compared the results against three schemes: 
the baseline architecture, virtual hierarchies,9 and PCD.10 
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Figure 2. Distribution of directory entries across 16 tiles for private and shared pages in simulations of scientific and Phoenix 
MapReduce workloads. The red line indicates a hypothetical uniform distribution. Flatter benchmarks indicate that the 
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Virtual hierarchies utilize a coherence protocol that  
dynamically assigns home tiles to cache blocks. An access 
that misses on the local tile finds the corresponding  
directory location by indexing a table using the bits of the 
physical address above the block offset. Thus, all pages 
with the same log2N bits in the physical address have 
their directory entries at the same tile. For our evaluation, 
we implemented a “perfect” virtual hierarchies scheme 
wherein the tile with the most accesses to a memory region 
becomes the home tile for the entire region.

PCD deactivates coherence tracking for cache blocks 
within a private page, while the placement of the directories 
for the shared pages is orthogonal to PCD. The original PCD 
proposal was evaluated on the AMD Magny-Cours proces-
sor architecture, where all the blocks within a page map to 
the same directory node, essentially interleaving the direc-
tories at page granularity. To isolate the effect of PCD from 
the choice of a coherence-tracking mechanism for shared 
data, we implemented an improved version of PCD in which 
the directories of shared blocks are address interleaved at 
block granularity, thereby relieving the hot spots generated 
in the original Magny-Cours-based PCD scheme.

Figure 3 illustrates the on-chip interconnect energy 
consumption of dynamic directories at cache-block 
granularity (DynDir-BLK, indicated by the letter d) and 
page granularity (DynDir-8K, indicated by the letter D), 
virtual hierarchies (V), and PCD (P), normalized to the 
energy consumption of the baseline architecture (B). Dy-
namic directories reduce network energy on average by 
21.2 percent at block granularity and 16.9 percent at page 
granularity. Virtual hierarchies save only 3.9 percent of 
network energy on average, as the system allocates di-
rectory entries for an entire memory region rather than 
individual pages. 

PCD exhibits the same gains as DynDir-8K for pri-
vate pages, as both PCD and directory homing eliminate 

interconnect traversals to the directory for private data. 
For shared data, PCD follows the baseline coherence 
and address interleaves the directories at block granu-
larity, thereby placing the directories at arbitrary nodes.  
DynDir-8K places the directories together with the shar-
ers, but placement at the page granularity could increase 
false sharing. Overall, DynDir-8K attains higher energy 
savings for shared data in some applications (for exam-
ple, Dsmc), while block interleaving the directories of 
shared data is a better choice for other applications (for 
example, Ocean). 

To separate the impact of directory homing from 
the granularity of directory placement, we compared 
page-grain address interleaving of shared directory  
entries—identical to the original Magny-Cours-based PCD 
scheme—with page-grain directory homing—identical 
to DynDir-8K. We found that DynDir-8K provides signifi-
cant benefits over the original Magny-Cours-based PCD 
scheme, achieving 35 percent energy savings in Ocean, 
29 percent in Appbt, 27 percent in Moldyn, and 9 percent 
in Fmm. However, compared to our improved version of 
PCD, the benefits of page-grain homing are balanced by the 
increased false sharing of page-grain directory placement. 
As a result, the block interleaving of PCD and the directory-
page homing of DynDir-8K even out across applications, 
resulting in energy savings within only 4 percent of each 
other on average.

The scientific applications attained higher energy sav-
ings (22.9 percent on average, 37.3 percent maximum) 
compared to the Phoenix MapReduce applications (8 per-
cent on average). Phoenix applications exhibit a higher 
fraction of shared data accesses, rendering dynamic direc-
tories less useful. The energy savings for all schemes are 
largely achieved through a reduction of control messages. 
As Figure 4 shows, on average dynamic directories elimi-
nated 22.7 percent of the control messages on the on-chip 
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Figure 3. Network energy consumption of multiple directory placement schemes in simulations of scientific and Phoenix 
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interconnect while PCD eliminated 25.7 percent and virtual 
hierarchies eliminated 3.1 percent of the control messages.

Performance impact
Figure 5 shows the overall speedup achieved using dy-

namic directories compared to the baseline architecture. 
Dynamic directories slightly increased performance in 7 
out of 15 applications and decreased performance in 2. 
They improved performance by up to 7 percent (Ocean) 
and by 1.4 percent on average, while the maximum per-
formance slowdown was 1.3 percent (Pca).

Performance improved because 

 • dynamic directories reduce the number of network 
packets, which eliminates congestion and hence re-
duces the effective interconnect latency, and 

 • data transfers (on-chip and off-chip) are faster because 
many accesses to remote directories are eliminated. 

Because the working set of most applications is large, dy-
namic directories’ savings are realized mostly by off-chip 
memory accesses. As off-chip memory access latency is 
already large, saving a few cycles does not improve per-
formance considerably.

We attribute the slowdown exhibited by Pca and Wcount 
to the page granularity at which dynamic directories are 
assigned, as this assignment can cause contention and hot 
spots. Especially for universally shared pages, it is likely 
that different cores access cache blocks in nearly consec-
utive cycles, causing contention in the directory tile and 
increasing the directory’s response time. On average, the 
positive and negative forces canceled each other out, and 
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Figure 5. Speedup of dynamic directories over the baseline architecture for scientific and Phoenix MapReduce workloads. 
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dynamic directories had only a small performance impact 
(1.4 percent on average).

A large fraction of on-chip interconnect traffic on 
multicore processors stems from placing directory 
entries without regard to data access and sharing 

patterns. Future architectures should consider the impli-
cations of allocating directory entries close to the cores 
accessing the corresponding data. The primary impact will 
be a reduction in on-chip interconnect power and energy 
consumption; in our evaluation, power and energy con-
sumption was reduced by up to 37.3 percent, with negligible 
hardware overhead and without any adverse performance 
impact—in fact, performance slightly improved. As the 
importance of on-chip interconnects rises with future 
process technologies, dynamic directories will effortlessly 
scale and provide even greater power savings. 
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