
 38 COMPUTER Published by the IEEE Computer Society 0018-9162/13/$31.00 © 2013 IEEE

COVER FE ATURE

Matthew Schuchhardt, Northwestern University

Abhishek Das, Intel
Nikos Hardavellas, Gokhan Memik, and Alok Choudhary, Northwestern University

A large fraction of on-chip multicore inter-
connect traffic originates not from actual
data transfers but from communication
between the cores to maintain data coher-
ence. Co-locating directories near their
shared data eliminates many interconnect
traversals, substantially reducing power
and energy consumption.

T o combat increasing on-chip wire delays as core
counts and cache sizes grow, multicore architec-
tures have become more distributed. For example,
in Intel Xeon Phi and Tilera TILE-Gx processors,

the on-chip last-level cache is divided into multiple cache
slices that are spread across the die area along with the
cores.1 To facilitate data transfers and communication
among the cores, such processors employ elaborate on-
chip interconnection networks that consume 10 to 28
percent of a multicore chip’s power,2,3 stressing an already
limited resource. As core counts continue to scale, the
on-chip interconnect’s power consumption is expected
to rise even higher.

To minimize this power consumption, researchers
have recently proposed circuit-level techniques to im-
prove the power efficiency of the link circuitry and router
microarchitecture,4 dynamic voltage scaling and power
management,5 and thermal-aware routing.6 However, these

efforts fail to consider that a significant fraction of the on-
chip interconnect traffic stems from packets that facilitate
data coherence, rather than from packets that transfer
shared data.

The coherence requirement is a consequence of per-
formance optimizations for on-chip data. To enable faster
data accesses, the distributed cache slices are typically
treated as private caches for the nearby cores, forming tiles
with a core and a cache slice in each tile.1 These caches
maintain data coherence through a directory-based coher-
ence protocol, wherein a distributed directory is address
interleaved among the tiles.1 However, address interleaving
is oblivious to data access and sharing patterns; it is often
the case that a cache block maps to a directory in a tile
physically located far from the accessing cores. To share
a cache block, the sharing cores must traverse the on-chip
interconnect multiple times to communicate with the di-
rectory, instead of communicating directly with each other.
These unnecessary network traversals increase traffic and
consume power and energy.

In recognition of this effect, Tilera’s TILEPro64 im-
plements a mechanism that aims to reduce directory
coherence traffic by allowing the software to designate a
page’s home node.7 This technique is similar to dynamic
directories, a technique that cooperates with the operating
system (OS) to eliminate the need to place directory entries
on a predetermined tile.8 Although the TILEPro64 provides
the placement mechanism, Tilera does not advocate a spe-
cific placement policy, nor does the literature contain an
evaluation of this technique’s efficacy.

The Impact
of Dynamic
Directories
on Multicore
Interconnects

 OCTOBER 2013 39

Here, we assess the impact of dynamic directories on
a multicore processor’s performance, power, and energy
consumption. We demonstrate this method’s effective-
ness under a simple directory placement policy, which
locates directory entries close to the most active sharer
cores of the corresponding cache blocks, and compare it to
both virtual hierarchies,9 a previously proposed technique
that also helps with directory placement, and a scheme
developed by Blas Cuesta and his colleagues10 that deacti-
vates coherence tracking for cache blocks within a private
page—for simplicity, we refer to this scheme as private co-
herence deactivation (PCD).

Compared to the baseline architecture, dynamic direc-
tories reduce interconnect power and energy by up to 37.3
percent (22.9 percent on average for scientific workloads,
8.0 percent for MapReduce workloads), with negligible per-
formance impact and hardware overhead, and save four
times more interconnect energy than virtual hierarchies.
Dynamic directories exhibit the same gains on private
pages as PCD.

ARCHITECTURE OVERVIEW
The baseline architecture is a tiled multicore wherein

each tile consists of a processing core, private split instruc-
tion and data first-level caches, a private second-level cache
(L2), a slice of the distributed directory, and a router.1 The
tiles are connected through a two-dimensional folded
torus. Without loss of generality, and similarly to most
relevant studies, we consider a full-map distributed direc-
tory that is address interleaved among the tiles.

Address interleaving does not require a lookup to ex-
tract the directory location; all nodes can independently
calculate it by the cache block address. However, address-
interleaved placement statically distributes the directories
without regard to the accessing cores’ locations, leading to
unnecessary on-chip interconnect traversals.

Figure 1a shows a typical data-sharing traffic pattern,
in which the directory is placed at an arbitrary node (tile
5) oblivious to the sharing cores’ locations (tiles 1 and
7). In this case, with tile 7 requesting data from tile 1, as
Figure 1b shows, the directory ideally would be co-located
with the sharer core at tile 1: this would eliminate two un-
necessary network messages and let the sharing cores
communicate directly rather than through an intermediate
node. Such placement is the goal of dynamic directories.
Note that even if the data are core-private, the private tile
still routes L2 misses to memory through the directory,
thereby unnecessarily involving an intermediate node.

DYNAMIC DIRECTORIES
Dynamic directories, similar to the TILEPro64, reduce

unnecessary on-chip interconnect traffic by placing
directory entries on tiles with cores that share the corre-
sponding data. To achieve this, for every page, dynamic
directories designate an owner tile of the directory en-
tries for the blocks in that page and store the owner ID in
the page table. By utilizing the existing virtual-to-physical
address translation mechanism, dynamic directories prop-
agate the directory location to all cores touching the page
through the translation lookaside buffer (TLB).

OS support and directory placement
To access the L2 cache, a core translates the virtual ad-

dress of the data to a physical address through the TLB.
Upon a TLB miss—for example, the first time a core ac-
cesses a page, or if the TLB entry has been evicted—the
system locates the corresponding OS page-table entry and
loads the address translation into the TLB.

Dynamic directories modify this process slightly. The
first time any of the cores access a page, the OS declares
the page private to that core—we refer to that core as the
first accessor. This information is stored in the page table.

Forward
request

Acknowledgment

Data response

On chip

O� chip
(a) (b)

O�-chip miss

Data
request Data request

Requester
(7)

Sharer
(1)

Requester
(7)

Sharer
(1)

Directory
(5)

Data response

Figure 1. Data-sharing traffic patterns in the baseline multicore architecture. (a) Packet flow when tile 7 requests data from a
block owned by tile 1, with the directory at tile 5. (b) Packet flow when the directory is co-located with the data.

 40 COMPUTER

COVER FE ATURE

No directory entries need to be allocated for a private page,
as there is no need to maintain coherence without sharers.

If another core accesses the page, that core will also
miss in its TLB as it has no valid entry. Upon the TLB miss,
the OS (or the hardware page-walk mechanism) discovers
that a core is already accessing this page and reclassifies
it as shared. At the same time, the first accessor becomes
the owner of the page’s directory entries, and the system
allocates the necessary directory entries in its tile. The
OS records the directory location in the page table and
communicates this to the core through the TLB fill. Thus,
any subsequent accessor of the page is also notified of
the location of the directory for the page’s blocks. This
guarantees that the directory is co-located with one of the
page’s sharer cores, and at the same time provides a simple
mechanism to locate the directory entries.

When it reclassifies a private page as shared, the system
must allocate directory entries for the page’s cached
blocks. However, it does not allocate directory entries for
private pages, so when a page becomes shared, the system
does not know which of its blocks are cached and what
state they are in. The only certainty is that the first acces-
sor has any of the page’s cached blocks.

The least complex solution is to flush all of that page’s
blocks from the first accessor’s cache, eliminating the need
to allocate directory entries for previously cached blocks.
From that point on, the system can allocate directory en-
tries on demand at the first accessor’s directory, as the first
accessor remains the directory owner. Although simple,
this solution increases the cache miss rate as well as the
number of cache accesses to perform the cache flush, both
of which have potentially detrimental effects on perfor-
mance, power, and energy consumption.

Alternatively, the system can conservatively allocate di-
rectory entries for all the page’s blocks and declare the first
accessor’s cache as the owner. The system will then for-
ward all requests for this page to the first accessor, which
can easily resolve the state of the requested blocks locally
(both cached blocks and directory entries reside in the
same tile).

In either method, the first accessor remains the owner
of the directory entries, and the OS invalidates the corre-
sponding TLB entry at the first accessor to remove the stale
private page state (the page is now shared). For our evalua-
tion, we chose the latter option: the system conservatively
allocates directory entries for all the page’s blocks. This
method has negligible power and performance impact, and

the only downside is that it might allocate more directory
entries than absolutely necessary during the relatively rare
reclassification events.

Dynamic directories allow cache coherence at the gran-
ularity of individual cache blocks; the OS only places the
corresponding directory entries at some tile. The place-
ment occurs at page granularity—the system places the
directory entries for all blocks within a page at the same
tile. Finer-grain placement is possible but incurs signif-
icant overhead. To support placement at granularities
smaller than a page, the TLB and page-table entries would
need to store multiple directory owners (one per place-
ment grain), and each subsection of the page would have
to generate a separate TLB trap to extract the directory
location for it. However, complex fine-grain techniques are
not justified, as granularities smaller than a page provide
negligible energy benefits. Nonetheless, for completeness,
we also present the energy savings of such a hypothetical
approach.

Thread migration
When threads migrate, the corresponding direc-

tory entries could either stay in the original tile and be
accessed remotely by the migrating thread or move along
with the migrating thread. Dynamic directories could also
be turned off.

The simplest choice is to leave the directory entries in
place and let the migrating thread access them remotely.
This does not require any new mechanisms or structures,
nor does it change any existing ones. Having directories
at a remote node and accessing them via the intercon-
nect is similar to the baseline architecture. The downside
is that directory placement might no longer be optimal,
and the interconnect could suffer from hot spots as all the
directory entries frequently accessed by this thread are
concentrated at the same remote node. Thus, under this
scheme, thread migration becomes even more expensive
than it already is, thereby raising the importance of affinity
scheduling. This would be the best option if threads mi-
grate away from their core only for short periods of time,
relatively infrequently, and quickly return due to affinity
scheduling.

The second alternative—migrate the directory entries
together with the thread—would preserve the affin-
ity of the directory entries and the thread at the cost of
identifying the entries to migrate, performing the actual
migration, and resolving any races occurring during the
directory migration. Identifying the directory entries to
migrate is easy when a core executes only a single thread:
all entries owned by that tile should migrate. However, a
core that executes multiple threads through multithread-
ing or time sharing needs to tag the directory entries
with the process/thread IDs, so the system knows exactly
which entries to move. Performing the migration would

Dynamic directories allow cache
coherence at the granularity of
individual cache blocks.

 OCTOBER 2013 41

require TLB shootdowns, as well as bandwidth and energy
consumption on the interconnect for the actual transfer.
Races could easily appear, as requests could arrive while
the directory migration is in flight, and the OS would have
to handle them successfully. Overall, this is an expen-
sive proposition, akin to traditional directory migration,
and likely would not provide enough additional benefits
to justify its implementation unless threads migrate to a
new core and stay there for a very long time before mi-
grating again.

Dynamic directories can be turned off for pathological
cases: one bit per page could indicate whether its direc-
tory entries are managed by dynamic directories or by
traditional address interleaving. However, the moment
that a page’s dynamic directories are turned off, the page
would need to go through a process similar to reclassifi-
cation: the OS has to flush cached blocks from the caches
and shoot down the corresponding TLB entries so they
can be updated. Thus, while easy to implement, this so-
lution also comes with potentially significant overhead.
To avoid excessive overhead, dynamic directories should
remain switched off for the entire duration of high thread-
migration rates. In that case, the overhead would be a one-
time event amortized over billions of accesses, and the
scheme would perform almost identically to the baseline.
While this would prevent dynamic directories from provid-
ing any benefit over the baseline, it would also guarantee
that they do no harm.

We did not observe any significant migration rates in
our workloads, hence we did not separately evaluate these
options. However, each solution is best suited for differ-
ent conditions of migration frequency and length of stay.
A sophisticated system could monitor these metrics and
employ the best option each time.

Overhead
Dynamic directories extend each TLB entry by

log2N + 1 bits, where N is the number of tiles. The Intel
Core i7 (Sandy Bridge) has two-level TLBs, with 64 L1-TLB
entries and 512 L2-TLB entries for a 4-Kbyte page size. For
16-core chip multiprocessors (CMPs), dynamic directories
add 4 bits for the directory owner and 1 bit for the shared/
private state. This amounts to only 5.63 Kbytes additional
static RAM (SRAM). We modeled the TLB with CACTI 6.511
and found that the energy overhead is negligible (0.7 per-
cent of the TLB read energy).

On the software side, Linux on Core i7 typically uses
64-bit page-table entries, in which bits 9-11 and 48-62 are
unused. These extra bits can accommodate up to 131,072
cores and hence dynamic directories do not add any
overhead in the page table. The only software overhead
incurred is a few extra lines of kernel code to initialize
the directory owner and state bits and to orchestrate page
reclassifications when necessary.

Mechanism justification
Instead of utilizing unused page-table entry bits

to encode the owner ID for a page’s directory entries,
dynamic directories could designate log2N bits of the
physical address to encode the owner tile ID. The selec-
tion of a physical frame for a virtual page would then be
limited only to addresses that assign the correct tile ID to
these bits.

However, this would couple the memory allocation with
the directory placement. Limiting physical addresses to
specific address ranges for each tile would cause memory
fragmentation, degrade performance, and complicate
other optimizations that pose conflicting address transla-
tion requests—for example, page coloring for L1 caches.
Overloading the address bits within the cache index for
directory placement would result in these bits being all
the same for pages assigned to the same tile, thereby utiliz-

ing only a subset of the available L2 cache sets. Similarly,
using higher address bits for directory placement might
conflict with the bits used for dynamic RAM bank, chan-
nel, or column selection, leading to underutilization of the
DRAM banks, memory channels, or row buffer. Moreover,
if address bits are used for directory placement, each core
in an N-core CMP will be able to allocate locally only 1/N
of the overall physical pages, limiting the performance
potential of dynamic directories if more pages are private
to (or accessed mostly by) that core.

Dynamic directories avoid all these problems by fully
decoupling page allocation from directory placement.

EXPERIMENTAL RESULTS
We evaluated dynamic directories by simulating a

16-core tiled CMP running scientific workloads (a mix-
ture of compute-intensive applications and computational
kernels) and Phoenix MapReduce workloads. We simulated
the CMP on Flexus12 and followed the SimFlex multi-
processor sampling methodology.13 The full details of our
simulation methodology, the power model, and details on
the simulated architecture and workloads appear else-
where.8 We simulated the entire execution of the Map
phase for Phoenix applications, which constitutes the ma-
jority of execution time, and three complete iterations for
the scientific applications.

Directory placement policy
Ideally, in the absence of directory migration, the direc-

tory entries for a page are placed at the tile that issues the

Dynamic directories fully decouple
page allocation from directory
placement.

 42 COMPUTER

COVER FE ATURE

most accesses to them. Identifying this tile, however, re-
quires complex techniques. Fortunately, the first accessor
of a page issues on average only 6 percent fewer accesses
than the top accessor, and it is trivial to identify. Therefore,
dynamic directories choose to allocate a page’s directory
entries to its first accessor.

Distribution of directory entries across tiles
Dynamic directories could skew the distribution of

directory entries to tiles, in contrast to the uniform dis-
tribution of traditional address interleaving. If some
tiles allocate vastly more directory entries than others,
they might require a disproportionately large area for
the directory or cause traffic hot spots that degrade
performance.

Figure 2 shows the distribution of directory entries
across the tiles for private and shared pages. There is a
band of 16 bars for each workload, with each bar’s height
designating how many pages have their directories al-
located at that tile. The red line indicates a hypothetical
uniform distribution. The figure yields three key insights.

First, while the distribution of directory entries is some-
times skewed, the imbalance could be minimized. Only
one core accesses private data, obviating the need for a
directory. Thus, dynamic directories allocate directory en-
tries only for shared pages, reducing the on-chip directory
capacity requirements by 48 percent on average.

Second, while the directory entries for shared pages are
mostly evenly distributed, oversubscribed tiles still exist
(excluding Kmeans and Fmm, a tile gets at most 18 percent
of the directories). With dynamic directories, the system

has the flexibility to allocate the directories to nearby tiles
or to another sharer core when the first accessor is over-
loaded, thus spreading the load while still guaranteeing
directory proximity to the accessing cores.

Finally, the uneven distribution of directory entries is
not a direct indicator of increased traffic hot spots. The
baseline might already exhibit imbalanced traffic, some
pages are colder than others, and dynamic directories
reduce the number of messages traversing the intercon-
nect by 22.7 percent on average, easing traffic congestion.
While dynamic directories on Kmeans, Fmm, and Dsmc
exacerbate existing traffic imbalances, these hot spots
have a negligible performance impact, as the applications
spend only a small fraction of execution time on the dis-
tributed L2 cache. In the remaining applications, a tile
could receive on average 8 percent more directory accesses
from remote cores compared to the baseline, but these
imbalances are relatively small and do not impact perfor-
mance. Also, as indicated earlier, in pathological cases it
is simple to turn off dynamic directories.

For completeness, we evaluated Kmeans and Fmm with
a modified dynamic directories scheme, wherein the di-
rectories for the shared pages are address interleaved at
block granularity similar to Reactive NUCA.1 This direc-
tory placement removes the hot spots that Kmeans and
Fmm experience.

Energy savings
We evaluated the impact of dynamic directories on

energy and compared the results against three schemes:
the baseline architecture, virtual hierarchies,9 and PCD.10

UnstructTomcatOceanMoldynFmmDsmcBarnesAppbt Watersp Hist Kmeans Lreg
Phoenix MapReduce workloadsScienti c workloads

Pca Smatch Wcount

Private
Shared

Pe
rce

nt
ag

e o
f p

ag
es

50

45

40

35

30

25

20

15

10

5

0

Figure 2. Distribution of directory entries across 16 tiles for private and shared pages in simulations of scientific and Phoenix
MapReduce workloads. The red line indicates a hypothetical uniform distribution. Flatter benchmarks indicate that the
directory entries are relatively evenly distributed across the tiles.

 OCTOBER 2013 43

Virtual hierarchies utilize a coherence protocol that
dynamically assigns home tiles to cache blocks. An access
that misses on the local tile finds the corresponding
directory location by indexing a table using the bits of the
physical address above the block offset. Thus, all pages
with the same log2N bits in the physical address have
their directory entries at the same tile. For our evaluation,
we implemented a “perfect” virtual hierarchies scheme
wherein the tile with the most accesses to a memory region
becomes the home tile for the entire region.

PCD deactivates coherence tracking for cache blocks
within a private page, while the placement of the directories
for the shared pages is orthogonal to PCD. The original PCD
proposal was evaluated on the AMD Magny-Cours proces-
sor architecture, where all the blocks within a page map to
the same directory node, essentially interleaving the direc-
tories at page granularity. To isolate the effect of PCD from
the choice of a coherence-tracking mechanism for shared
data, we implemented an improved version of PCD in which
the directories of shared blocks are address interleaved at
block granularity, thereby relieving the hot spots generated
in the original Magny-Cours-based PCD scheme.

Figure 3 illustrates the on-chip interconnect energy
consumption of dynamic directories at cache-block
granularity (DynDir-BLK, indicated by the letter d) and
page granularity (DynDir-8K, indicated by the letter D),
virtual hierarchies (V), and PCD (P), normalized to the
energy consumption of the baseline architecture (B). Dy-
namic directories reduce network energy on average by
21.2 percent at block granularity and 16.9 percent at page
granularity. Virtual hierarchies save only 3.9 percent of
network energy on average, as the system allocates di-
rectory entries for an entire memory region rather than
individual pages.

PCD exhibits the same gains as DynDir-8K for pri-
vate pages, as both PCD and directory homing eliminate

interconnect traversals to the directory for private data.
For shared data, PCD follows the baseline coherence
and address interleaves the directories at block granu-
larity, thereby placing the directories at arbitrary nodes.
DynDir-8K places the directories together with the shar-
ers, but placement at the page granularity could increase
false sharing. Overall, DynDir-8K attains higher energy
savings for shared data in some applications (for exam-
ple, Dsmc), while block interleaving the directories of
shared data is a better choice for other applications (for
example, Ocean).

To separate the impact of directory homing from
the granularity of directory placement, we compared
page-grain address interleaving of shared directory
entries—identical to the original Magny-Cours-based PCD
scheme—with page-grain directory homing—identical
to DynDir-8K. We found that DynDir-8K provides signifi-
cant benefits over the original Magny-Cours-based PCD
scheme, achieving 35 percent energy savings in Ocean,
29 percent in Appbt, 27 percent in Moldyn, and 9 percent
in Fmm. However, compared to our improved version of
PCD, the benefits of page-grain homing are balanced by the
increased false sharing of page-grain directory placement.
As a result, the block interleaving of PCD and the directory-
page homing of DynDir-8K even out across applications,
resulting in energy savings within only 4 percent of each
other on average.

The scientific applications attained higher energy sav-
ings (22.9 percent on average, 37.3 percent maximum)
compared to the Phoenix MapReduce applications (8 per-
cent on average). Phoenix applications exhibit a higher
fraction of shared data accesses, rendering dynamic direc-
tories less useful. The energy savings for all schemes are
largely achieved through a reduction of control messages.
As Figure 4 shows, on average dynamic directories elimi-
nated 22.7 percent of the control messages on the on-chip

UnstructTomcatOceanMoldynFmmDsmcBarnesAppbt Watersp Hist Kmeans Lreg
Phoenix MapReduce workloadsScienti c workloads

Pca Smatch Wcount
Average

No
rm

ali
ze

d e
ne

rg
y

1.0

0.8

0.6

0.4

0.2

0

SharedPrivate

B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d DB V P d D

Figure 3. Network energy consumption of multiple directory placement schemes in simulations of scientific and Phoenix
MapReduce workloads, normalized to the baseline architecture. The evaluated schemes are, from left to right: the baseline
architecture (B), virtual hierarchies (V), private coherence deactivation (P), dynamic directories at 64-byte cache-block
granularity (d), and dynamic directories at 8-Kbyte page granularity (D). The energy consumption for private and shared data,
classified at page granularity, is shown separately.

 44 COMPUTER

COVER FE ATURE

interconnect while PCD eliminated 25.7 percent and virtual
hierarchies eliminated 3.1 percent of the control messages.

Performance impact
Figure 5 shows the overall speedup achieved using dy-

namic directories compared to the baseline architecture.
Dynamic directories slightly increased performance in 7
out of 15 applications and decreased performance in 2.
They improved performance by up to 7 percent (Ocean)
and by 1.4 percent on average, while the maximum per-
formance slowdown was 1.3 percent (Pca).

Performance improved because

 • dynamic directories reduce the number of network
packets, which eliminates congestion and hence re-
duces the effective interconnect latency, and

 • data transfers (on-chip and off-chip) are faster because
many accesses to remote directories are eliminated.

Because the working set of most applications is large, dy-
namic directories’ savings are realized mostly by off-chip
memory accesses. As off-chip memory access latency is
already large, saving a few cycles does not improve per-
formance considerably.

We attribute the slowdown exhibited by Pca and Wcount
to the page granularity at which dynamic directories are
assigned, as this assignment can cause contention and hot
spots. Especially for universally shared pages, it is likely
that different cores access cache blocks in nearly consec-
utive cycles, causing contention in the directory tile and
increasing the directory’s response time. On average, the
positive and negative forces canceled each other out, and

UnstructTomcatOceanMoldynFmmDsmcBarnesAppbt Watersp Hist Kmeans Lreg
Phoenix MapReduce workloadsScienti c workloads

Pca Smatch Wcount
Average

Nu
m

be
r o

f c
on

tro
l m

es
sa

ge
s

1.0

0.8

0.6

0.4

0.2

0

SharedPrivate

B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d D B V P d DB V P d D

Figure 4. Number of interconnect control messages (all messages except data replies) of scientific and Phoenix MapReduce
workloads, normalized to the baseline architecture (B). Data is analyzed at 64-byte cache-block (d) and 8,000-page (D)
granularities, and compared to virtual hierarchies (V) and private coherence deactivation (P). The number of messages for
private and shared data, classified at page granularity, is shown separately. The nonglobal sharing characteristics of the
scientific workloads lead to generally higher savings.

Sp
ee

du
p o

ve
r b

as
eli

ne

–0.05

–0.10

0.00

0.20

0.15

0.10

0.05

Scienti�c workloads Phoenix MapReduce workloads

Hi
st

Km
ea

ns

Lre
g

Pc
a

Sm
at

ch

W
co

un
t

Av
er

ag
e

Un
str

uc
t

To
m

ca
t

Oc
ea

n

M
old

yn

Fm
m

Ds
m

c

Ba
rn

es

Ap
pb

t

W
at

er
sp

Figure 5. Speedup of dynamic directories over the baseline architecture for scientific and Phoenix MapReduce workloads.
Performance is slightly improved, with a 1.4 percent average speedup.

 OCTOBER 2013 45

dynamic directories had only a small performance impact
(1.4 percent on average).

A large fraction of on-chip interconnect traffic on
multicore processors stems from placing directory
entries without regard to data access and sharing

patterns. Future architectures should consider the impli-
cations of allocating directory entries close to the cores
accessing the corresponding data. The primary impact will
be a reduction in on-chip interconnect power and energy
consumption; in our evaluation, power and energy con-
sumption was reduced by up to 37.3 percent, with negligible
hardware overhead and without any adverse performance
impact—in fact, performance slightly improved. As the
importance of on-chip interconnects rises with future
process technologies, dynamic directories will effortlessly
scale and provide even greater power savings.

Acknowledgments
This work was partially supported by National Science Foun-
dation grants CCF-1218768, CCF-0916746, CCF-0747201, and
CNS-083092; by Northwestern University through an ISEN
booster award; and by the June and Donald Brewer Chair in
EECS at Northwestern University (and other funds from North-
western University).

References
 1. N. Hardavellas et al., “Near-Optimal Cache Block Place-

ment with Reactive Nonuniform Cache Architectures,”
IEEE Micro, vol. 30, no. 1, 2010, pp. 20-28.

 2. E. Totoni et al., “Comparing the Power and Performance of
Intel’s SCC to State-of-the-Art CPUs and GPUs,” Proc. 2012
IEEE Int’l Symp. Performance Analysis of Systems & Soft-
ware (ISPASS 12), IEEE CS, 2012, pp. 78-87.

 3. S. Borkar, “The Exascale Challenge,” Proc. 2010 Int’l Symp.
VLSI Design Automation and Test (VLSI-DAT 10), IEEE, 2010,
pp. 2-3.

 4. H. Wang, L.-S. Peh, and S. Malik, “Power-Driven Design of
Router Microarchitectures in On-Chip Networks,” Proc.
36th Ann. IEEE/ACM Int’l Symp. Microarchitecture (MICRO-
36), IEEE CS, 2003, pp. 105-116.

 5. L. Shang, L.-S. Peh, and N.K. Jha, “Dynamic Voltage Scaling
with Links for Power Optimization of Interconnection Net-
works,” Proc. 9th Int’l Symp. High-Performance Computer
Architecture (HPCA 03), IEEE CS, 2003, pp. 91-102.

 6. L. Shang et al., “Thermal Modeling, Characterization and
Management of On-Chip Networks,” Proc. 37th Ann. IEEE/
ACM Int’l Symp. Microarchitecture (MICRO-37), IEEE CS,
2004, pp. 67-78.

 7. Tilera Corp., Tile Processor User Architecture Manual, rel.
2.4, doc. no. UG101, Nov. 2011; www.tilera.com/scm/docs/
UG101-User-Architecture-Reference.pdf.

 8. A. Das et al., “Dynamic Directories: A Mechanism for
Reducing On-Chip Interconnect Power in Multicores,”
Proc. 2012 Conf. Design, Automation, and Test in Europe
(DATE 12), EDA Consortium, 2012, pp. 479-484.

 9. M.R. Marty and M.D. Hill, “Virtual Hierarchies to Support
Server Consolidation,” Proc. 34th Ann. Int’l Symp. Computer
Architecture (ISCA 07), ACM, 2007, pp. 46-56.

 10. B.A. Cuesta et al., “Increasing the Effectiveness of Directory
Caches by Deactivating Coherence for Private Memory
Blocks,” Proc. 38th Ann. Int’l Symp. Computer Architecture
(ISCA 11), ACM, 2011, pp. 93-104.

 11. N. Muralimanohar, R. Balasubramonian, and N.P. Jouppi,
CACTI 6.0: A Tool to Model Large Caches, tech. report HPL-
2009-85, HP Labs, 2009; www.hpl.hp.com/techreports/
2009/HPL-2009-85.html.

 12. N. Hardavellas et al., “SimFlex: A Fast, Accurate, Flex-
ible Full-System Simulation Framework for Performance
Evaluation of Server Architecture,” ACM SIGMETRICS
Performance Evaluation Rev., vol. 31, no. 4, 2004, pp. 31-34.

 13. T.F. Wenisch et al., “SimFlex: Statistical Sampling of Com-
puter System Simulation,” IEEE Micro, vol. 26, no. 4, 2006,
pp. 18-31.

Matthew Schuchhardt is a PhD student in the Department
of Electrical Engineering and Computer Science at North-
western University as well as an intern in the Strategic
CAD Labs group at Intel in Hillsboro, Oregon. His research
interests include parallel computer architectures, empathic
systems, and affective computing. Contact him at matthew.
schuchhardt@intel.com.

Abhishek Das is a security architect in the Data Center and
Connected Systems group at Intel in Hillsboro, Oregon. His
research focuses on security architecture and the design
of future-generation Intel Xeon platforms. Das received a
PhD in electrical engineering and computer science from
Northwestern University. Contact him at abhishek.das@
intel.com.

Nikos Hardavellas is an assistant professor in the Depart-
ment of Electrical Engineering and Computer Science at
Northwestern University. His research interests include
parallel computer architecture, memory systems, optical
interconnects, elastic fidelity computing, and design for
dark silicon. Hardavellas received a PhD in computer sci-
ence from Carnegie Mellon University. He is a member of
IEEE and ACM. Contact him at nikos@northwestern.edu.

Gokhan Memik is an associate professor in the Depart-
ment of Electrical Engineering and Computer Science at
Northwestern University. His research interests include
computer architecture, embedded systems, and mobile com-
puting. Memik received a PhD in electrical engineering from
the University of California, Los Angeles. Contact him at
memik@eecs.northwestern.edu.

Alok Choudhary is the John G. Searle Professor of Elec-
trical Engineering and Computer Science and a professor
in the Kellogg School of Management at Northwestern
University, where he is also director of the Center for Ultra-
scale Computing and Information Security (CUCIS). His
research interests include high-performance computing,
data-intensive computing, scalable data mining, computer
architecture, and high-performance I/O systems and soft-
ware. Choudhary received a PhD in computer engineering
from the University of Illinois at Urbana-Champaign. He is
a Fellow of IEEE, ACM, and the American Association for
the Advancement of Science. Contact him at choudhar@
eecs.northwestern.edu.

