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ABSTRACT
Popular belief holds that the cores on chip will grow at an
exponential rate, following Moore’s Law, with a commensu-
rate increase in performance. However, by exploring the
design space of multicore chips across technologies under a
large array of design parameters, we observe that physical
constraints in power and off-chip bandwidth prohibit such
performance increase. This leads us to conclude that server
chips will not scale beyond a few tens of cores, potentially
leaving the die real-estate underutilized in future technology
generations. We observe that heterogeneous multicores can
leverage the die area to overcome the initial power barrier,
delivering significantly higher performance for the same off-
chip bandwidth and power envelopes. Thus, specialized com-
puting, especially when coupled with emerging memory tech-
nologies, promises significant increases in performance and
energy-efficiency compared to general-purpose computing in
the datacenter.

INTRODUCTION
As Moore’s Law continues for at least another decade, the
number of cores on chip will continue to grow at an exponen-
tial rate. While workloads with limited parallelism pose per-
formance challenges with chip multiprocessors (CMPs),
server workloads with abundant parallelism are believed to be
immune, capable of scaling to the parallelism available in the
hardware. However, contrary to popular belief, despite the
inherent scalability in threaded server workloads, increasing
core counts cannot directly translate into performance
improvements because chips are physically constrained in
power and off-chip bandwidth.
Multicores are not a panacea for server processor designs.
While Moore’s Law enables more transistors on chip [4], the
static power consumption of the additional transistors can no
longer be mitigated through circuit-level techniques [1].
Although a trade-off exists between cache performance and
leakage power, the cache latency cannot be sufficiently
reduced to deliver reasonable performance and simultane-
ously limit the leakage power. Additionally, the multiplying
core counts and thread contexts constitute a substantial frac-
tion of the chip’s transistors, steadily raising both static and
dynamic core power consumption. While voltage-frequency
scaling may lower the dynamic power of the cores and enable
more cores on chip, static power dissipation and performance
requirements impose a limit. Thus, despite the abundant paral-
lelism present in server workloads, server multicore designs
are rapidly approaching the power wall.
Considering a large array of design parameters, we construct
detailed models which conform to ITRS projections of future

manufacturing technologies. We jointly optimize supply and
threshold voltage, clock frequency, core count, manufacturing
process, cache size, and memory technology to conclude that,
without a technological miracle, server CMPs will not scale
beyond a few tens of cores due to physical power and off-chip
bandwidth constraints, leaving the die real-estate underuti-
lized. We observe that heterogeneous multicores, by reducing
energy waste through specialization, can leverage the die area
to overcome the initial power barrier, delivering significantly
higher performance under the same physical constraints.
Thus, specialized computing shows promise in improving the
aggregate performance and energy efficiency of the datacen-
ter. This is especially true when heterogeneous CMPs are cou-
pled with emerging memory technologies, which mitigate the
bandwidth wall and fully expose the CMP to the power wall.

METHODOLOGY
Complexity and run-time requirements make it impractical to
rely on full-system simulation for a large-scale design-space
exploration study. Instead, we rely on first-order analytical
models of the dominant components, with parameters tuned
through full-system simulation. Our algorithm uses the ana-
lytical models as constraints, always finding the core count
and cache size of the peak-performing design.
We model CMPs across four fabrication technologies: 65nm,
45nm, 32nm (due in 2013) and 20nm (due in 2017). For each
technology node, we utilize parameters and projections from
the International Technology Roadmap for Semiconductors
(ITRS) 2008 Edition [4]. In agreement with ITRS, we model
bulk planar CMOS for the 65nm and 45nm nodes, ultra-thin-
body fully-depleted MOSFETs for 32nm technology, and dou-
ble-gate FinFETs for the 20nm node.
We model multicore processors running server workloads
(i.e., TPC-C, TPC-H and SPECweb) with cores built in one of
three ways: general purpose (GPP), embedded (EMB), or spe-
cialized (Ideal-P). GPP cores are similar to the cores in Sun
UltraSPARC T1. We model 4-way multi-threaded scalar in-
order cores, as similar cores have been shown to optimize per-
formance for server workloads [2]. Because general-purpose
cores consume an inordinate amount of power and area com-
pared to embedded cores, we also evaluate cores similar to the
ones in ARM11 MPCore. To evaluate the potential of hetero-
geneous multicores running server workloads, we also study
cores with ASIC-like properties: Ideal-P cores deliver 20x the
performance of a GPP core on 1/8th the power under control-
intensive workloads [3]. A heterogeneous multicore processor
will enable only the Ideal-P cores that most closely match the
requirements of the available work, and use GPP cores for
non-critical or complex/uncommon parts of the program,
thereby exhibiting near-ASIC properties.



Figure 1 shows an example result of our model for GPP cores.
The “Area” curve shows the performance of area-constrained
designs operating at maximum frequency, assuming unlimited
power and bandwidth. The “Power” curve shows power-con-
strained designs at maximum frequency, assuming unlimited
area and bandwidth. The “Area+Power” curve shows voltage-
frequency scaling (VFS), assuming unlimited bandwidth.
Finally, the “Bandwidth” curve shows VFS designs subject
only to bandwidth constraints. The “Peak Performance”
design is initially bounded by bandwidth, eventually reaching
the “Area+Power” VFS constraint at 32MB of cache.

RESULT HIGHLIGHTS
We find that EMB multicores exhibit trends similar to GPP
multicores. The peak-performing designs are bandwidth-con-
strained at small cache sizes, becoming power-constrained for
larger caches, with the highest performing designs at the inter-
section of the constraints. Both GPP and EMB designs require
similar-sized caches to remain within the bandwidth envelope.
For peak performance, EMB multicores require twice the core
count of GPP. Although additional cores deliver higher per-
formance in 65nm technology, the higher core counts at
smaller technologies provide a marginal performance benefit
due to Amdahl’s Law. While the best 20nm EMB design
allows for 176 cores compared to 88 GPP cores, the EMB
design trails 13% in absolute performance with a 99% parallel
workload, achieving a speedup over GPP designs only with

99.6% or higher workload parallelism. Furthermore, higher
core counts stress the interconnect, dissipating 68% more
power than the interconnect of the GPP design (Figure 2). The
EMB performance/watt is therefore similar to GPP designs,
with the power efficiency of EMB cores outweighed by the
power consumption of the interconnect.
While GPP and EMB designs are ultimately power-limited,
the superior performance and power characteristics of Ideal-P
cores results in Ideal-P CMPs achieving 3-7x higher perfor-
mance with only 1/3rd to 1/4th of the cores required by their
GPP and EMB counterparts (Figure 3). The remaining die
real-estate can be utilized to implement a diverse collection of
specialized cores, to increase the likelihood that a core
matches the requirements of the available work. Moreover,
the low running core count of Ideal-P designs increases per-
formance even for workloads with relatively low parallelism,
providing a much-needed respite from Amdahl’s Law.
With all core designs we study, the use of a large 3D-stacked
memory alleviates the off-chip bandwidth wall for most mem-
ory accesses, even when accounting for the exponentially
growing application datasets. This allows for 2-3x more cores
on average compared to bandwidth-limited designs, with a
corresponding increase in performance (Figure 3).
In conclusion, specialized computing can leverage the die
area to overcome the initial power barrier, reducing energy
waste through specialization and delivering significantly
higher performance and energy-efficiency in the datacenter.
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FIGURE 1: Performance of physically-constrained CMPs.
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FIGURE 2: CMP power breakdown for TPC-C (20nm).
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FIGURE 3: Speedup of GPP, EMB and Ideal-P CMPs.
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