When Core Multiplicity Doesn't Add Up

Keynote ISPDC 2010

Nikos Hardavellas
PARAG@N – Parallel Architecture Group
Northwestern University

Collaborators: M. Ferdman, B. Falsafi, A. Ailamaki

Moore's Law Is Alive And Well

(Intel, 2005)

90nm transistor Swine Flu A/H1N1, (CDC)

65nm 2007

45nm 2010

32nm

2013

2016 2019

Device scaling continues for at least another 10 years

Moore's Law Is Alive And Well

Good Days Ended Nov. 2002

"New" Moore's Law: 2x cores with every generation

"New" Moore's Law

→ So, are 1000-core chips a viable architecture?

Performance Expectations vs. Reality

Physical constraints limit speedup

Physical Constraints Hamper Performance

What are the "best" designs given physical constraints?

First-Order Analytical Modeling

Physical characteristics modeled after UltraSPARC T2, ARM11

- Area: Cores + caches = 72% die, scaled across technologies
- Power: ITRS projections of V_{dd}, V_{th}, C_{gate}, I_{sub}, W_{gate}, S₀
 - Active: cores=f(GHz), cache=f(access rate), NoC=f(hops)
 - Leakage: f(area), f(devices), 66°C
 - o Devices/ITRS: Bulk Planar CMOS, UTB-FD SOI, FinFETs, HP/LOP
- Bandwidth:
 - ITRS projections on I/O pins, off-chip clock, f(miss, GHz)
- Performance: CPI model based on miss rate
 - Parameters from real server workloads (DB2, Oracle, Apache)
 - Cache miss rate model (validated), Amdahl & Myhrvold Laws

Caveats

- First-order model
 - □ The intent is to uncover trends relating the effects of technology-driven physical constraints to the performance of commercial workloads running on multicores
 - □ The intent is NOT to offer absolute numbers
- Performance model works well for workloads with low MLP
 - □ Database (OLTP, DSS) and web workloads are mostly memory-latency-bound
- Workloads are assumed parallel
 - Scaling server workloads is reasonable

Area vs. Power Envelope

Good news: can fit 100's cores. Bad news: cannot power them all

Pack More Slower Cores, Cheaper Cache

The reality of The Power Wall: a power-performance trade-off

Pin Bandwidth Constraint

▶ Bandwidth constraint favors fewer + slower cores, more cache

Example of Optimization Results

- First bandwidth-constrained, then power-constrained
- ▶ Fewer + slower cores, lots of cache

Core Counts for Peak-Performance Designs

Year of Technology Introduction

- Designs > 64-120 cores impractical for server workloads
- Pin B/W and power envelopes + dataset scaling limit core counts

Datasets Scale Faster than Moore's Law

Year of Technology Introduction

Need more off-chip bandwidth

Core Counts Increase Fast (thus far...)

Need more off-chip bandwidth

But, Off-Chip Bandwidth Scales Slowly

Year of Technology Introduction

➡ Limited by #pins, off-chip clock → meet The Bandwidth Wall!

Breaking the Bandwidth Wall: 3D-die stacking

Delivers TB/sec of bandwidth to "in-package" DRAM (use as cache)

Performance Analysis of 3D-Stacked Multicores

Chip becomes fully power-constrained

Peak-Performance 3D-Stacked Multicore Designs

Year of Technology Introduction

Power envelope + Amdahl's Law limit the core count

Impact of Amdhal's Law

Parallelism Available in Workload

- Even 100% parallel workloads with 3D-memory are limited
 - So, the real limiter is Power!

Voltage Scales Slower Than Moore's Law

Year of Technology Introduction

Need exponentially more power per chip

Conventional Power-Reducing Techniques Are Inadequate

- Shrinking range of operational voltage hampers voltage-freq. scaling
 - Traditional techniques cannot reduce power requirements

But Chip Power Does Not Scale

Note: even if cooling is solved, power delivery may be the new constraint

- Chip power does not scale, but more transistors need more power
- Cannot power all silicon simultaneously! Large die area left unused!

Exponentially Large Die Area Left Unutilized

Year of Technology Introduction

Exploit unutilized area to build specialized cores

Example of a Specialized Multicore Chip

Many custom cores on chip; power only the most useful ones

First-Order Core Specialization Model

- 720p HD H.264 encoder (high-definition video encoder)
- Several optimized implementations exist
 - □ Commercial ASICs, FPGAs, CMP software
- Wide range of computational motifs

		Frames per sec	Energy per frame (mJ)	Performance gap with ASIC	Energy gap with ASIC
ASIC		30	4		
СМР	IME	0.06	1179	525x	707x
	FME	0.08	921	342x	468x
	Intra	0.48	137	63x	157x
	CABAC	1.82	39	17x	261x

Performance of Specialized Multicores

Year of Technology Introduction

Specialized multicores deliver 2x-12x higher performance

Core Counts for Specialized Multicores

- Only few cores need to run at a time
- Vast unused die area will allow the implementation of many cores

Core Specialization

- Could use existing general designs
 - OoO for ILP, in-order-CMT for memory-latency-bound, SIMD for data-parallel, systolic arrays, GPUs-on-chip, etc
- Could use customizable cores
 - Tensilica Xtensa (custom ISA and datapath, operation fusion)
- Could even add reconfigurable logic
- Generality of implemented operations
 - □ Target specific application
 - Common macro-operations
 - □ General ISA
- Trade-offs in performance, power, programmability, generality
- Wide range of "heterogeneity" and "specialization" meanings

Take-Home Message

- Physical constraints and software pragmatics limit core counts
 - □ ...and performance
- Emerging/exotic technologies may solve some problems
 - ...but silicon area will be wasted unless we act on it!
- What should we do? reduce wasted energy per unit of work
 - Heterogeneity, core specialization
 - □ Use underutilized die area to implement specialized cores
 - Only power the few cores needed
 - □ The rest of the chip remains off to conserve energy
- Need to innovate across software/hardware stack
 - □ Programmability, tools are a great challenge

Thank You!

"Multicore: This is the one which will have the biggest impact on us. We have never had a problem to solve like this. A breakthrough is needed in how applications are done on multicore devices."

- Bill Gates

"It's time we rethink some of the basics of computing. It's scary and lots of fun at the same time."

- Burton Smith

Backup

Static Power: Exploit Clock Scaling

Year of Technology Introduction

- Cores run slow, within range of LOP transistors
- 20x less leakage, no performance hit, 25% higher perf./Watt