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Moore’s Law Is Alive And Well
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®» Device scaling continues for at least another 10 years
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Moore’s Law Is Alive And Well
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Good Days Ended Nov. 2002

1.E+07 -
|
| s
1.E+06 . .
¢ Transistors (in Thousands) : s 2 2
® Frequency (MHz) s ¢
1.E+05 e Cores -
|
1.E+04 'S g |
TN t . $e .
1.E+03 +— s s s = —
w2 |
. > . a |
1.E+02 1 2 2 - Ul I —
-y o |
1.E+01 1— I —
. N I ® O
* 4 | 9
1.E+00 J 4 . 2 L 2n 2 L —
|
1.E-01 : ] : : . , | - [Yelick09]
1970 1975 1980 1985 1990 1995 2000 2005 2010

» “New” Moore’s Law: 2x cores with every generation
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“New” Moore’s Law
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®» So, are 1000-core chips a viable architecture?
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Performance Expectations vs. Reality
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®» Physical constraints limit speedup
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Physical Constraints Hamper Performance

Thermal

Bandwidth

®» What are the “best” designs given physical constraints?
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First-Order Analytical Modeling

Physical characteristics modeled after UltraSPARC T2, ARM11
® Area: Cores + caches = 72% die, scaled across technologies
" Power: ITRS projections of Vy, Vi, Coater lsunr Waater So
o Active: cores=f(GHz), cache=f(access rate), NoC=f(hops)
o Leakage: f(area), f(devices), 66°C
o Devices/ITRS: Bulk Planar CMQOS, UTB-FD SOI, FinFETs, HP/LOP
" Bandwidth:
o ITRS projections on |/O pins, off-chip clock, f(miss, GHz)
® Performance: CPlI model based on miss rate

gate’

o Parameters from real server workloads (DB2, Oracle, Apache)
o Cache miss rate model (validated), Amdahl & Myhrvold Laws
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Caveats

e First-order model

0 The intent is to uncover trends relating the effects of
technology-driven physical constraints to the performance
of commercial workloads running on multicores

0 The intent is NOT to offer absolute numbers

e Performance model works well for workloads with low MLP

o Database (OLTP, DSS) and web workloads are mostly
memory-latency-bound

e Workloads are assumed parallel

0 Scaling server workloads is reasonable
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Area vs. Power Envelope
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Good news: can fit 100’s cores. Bad news: cannot power them all
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Pack More Slower Cores, Cheaper Cache
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®» The reality of The Power Wall: a power-performance trade-off
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Pin Bandwidth Constraint
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®» Bandwidth constraint favors fewer + slower cores, more cache
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Example of Optimization Results
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®» First bandwidth-constrained, then power-constrained

®» Fewer + slower cores, lots of cache

Keynote ISPDC 2010 13 © Hardavellas



MCcCormick
Northwestern Engineering

Core Counts for Peak-Performance Designs

1g?g Max EMB Cores
256 - Embedded (EMB)
g 128 -©- General-Purpose (GPP)
S 64 -
O 32
o 16 1 Physical characteristics
4 8
- modeled after
E 2 e UltraSPARC (GPP)
Z 1

2004 2007 2010 2013 2016 2019 ° ARM11(EMB)

Year of Technology Introduction

®» Designs > 64-120 cores impractical for server workloads

®» Pin B/W and power envelopes + dataset scaling limit core counts
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Datasets Scale Faster than Moore’s Law
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®» Need more off-chip bandwidth
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Core Counts Increase Fast (thus far...)
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®» Need more off-chip bandwidth
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But, Off-Chip Bandwidth Scales Slowly
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®» Limited by #pins, off-chip clock 2 meet The Bandwidth Wall!
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Breaking the Bandwidth Wall: 3D-die stacking

DRAM Cells
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®» Delivers TB/sec of bandwidth to “in-package” DRAM (use as cache)
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®» Chip becomes fully power-constrained
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Peak-Performance 3D-Stacked Multicore Designs
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®» Power envelope + Amdahl’s Law limit the core count
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Impact of Amdhal’s Law

128 - ¢ Avg w/ 3D-Stacked Memory
- Avg w/ Conventional Memory

(7))

Q

o

3 32

5 16

o 8

0

g 4-

Z 2
1 T T T 1
80% 85% 90% 95% 100%

Parallelism Available in Workload

®» Even 100% parallel workloads with 3D-memory are limited

®» So, the real limiter is Power!
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Voltage Scales Slower Than Moore’s Law
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®» Need exponentially more power per chip
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Conventional Power-Reducing Techniques
Are Inadequate
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®» Shrinking range of operational voltage hampers voltage-freq. scaling
®» Traditional techniques cannot reduce power requirements
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But Chip Power Does Not Scale
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new constraint

®» Chip power does not scale, but more transistors need more power
®» Cannot power all silicon simultaneously! Large die area left unused!
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Exponentially Large Die Area Left Unutilized
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®» Exploit unutilized area to build specialized cores
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Example of a Specialized Multicore Chip
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®» Many custom cores on chip; power only the most useful ones
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First-Order Core Specialization Model

e 720p HD H.264 encoder (high-definition video encoder)
e Several optimized implementations exist

o Commercial ASICs, FPGAs, CMP software
e Wide range of computational motifs

Frames Energy per Performance Energy gap

per sec frame (mJ) gap with ASIC with ASIC

ASIC 30 4
IME 0.06 1179 525x 707X
FME 0.08 921 342x 468X
CMP
Intra 0.48 137 63X 157x

27 [Hameed et al., ISCA'10]
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Performance of Specialized Multicores
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®» Specialized multicores deliver 2x-12x higher performance
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Core Counts for Specialized Multicores
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®» Only few cores need to run at a time

®» Vast unused die area will allow the implementation of many cores
29
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Core Specialization
e Could use existing general designs

o OoO for ILP, in-order-CMT for memory-latency-bound, SIMD
for data-parallel, systolic arrays, GPUs-on-chip, etc

e Could use customizable cores
o Tensilica Xtensa (custom ISA and datapath, operation fusion)
e Could even add reconfigurable logic
e Generality of implemented operations
o Target specific application
o Common macro-operations
o General ISA
e Trade-offs in performance, power, programmability, generality

®» Wide range of “heterogeneity” and “specialization” meanings
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Take-Home Message

e Physical constraints and software pragmatics limit core counts
0 ...and performance

e Emerging/exotic technologies may solve some problems
0 ...but silicon area will be wasted unless we act on it!

e What should we do? reduce wasted energy per unit of work
0 Heterogeneity, core specialization
0 Use underutilized die area to implement specialized cores
o Only power the few cores needed
0 The rest of the chip remains off to conserve energy

e Need to innovate across software/hardware stack
0 Programmability, tools are a great challenge

31
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Thank You!

“Multicore: This is the one which will have the biggest
impact on us. We have never had a problem to solve like
this. A breakthrough is needed in how applications are
done on multicore devices.”

— Bill Gates

“It’s time we rethink some of the basics of computing. It’s
scary and lots of fun at the same time.”

— Burton Smith
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Backup

33
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Static Power: Exploit Clock Scaling
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®» Cores run slow, within range of LOP transistors
®» 20x less leakage, no performance hit, 25% higher perf./Watt
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