
Generalized Collective Algorithms
for the Exascale Era

Michael Wilkins
Northwestern University

wilkins@u.northwestern.edu

Hanming Wang
Northwestern University

hanmingwang2022@u.northwestern.edu

Peizhi Liu
Northwestern University

peizhiliu2023@u.northwestern.edu

Bangyen Pham
Northwestern University

bangyen@u.northwestern.edu

Yanfei Guo
Argonne National Laboratory

yguo@anl.gov

Rajeev Thakur
Argonne National Laboratory

thakur@anl.gov

Peter Dinda
Northwestern University

pdinda@northwestern.edu

Nikos Hardavellas
Northwestern University

nikos@northwestern.edu

Abstract—Exascale supercomputers have renewed the exigence
of improving distributed communication, specifically MPI collec-
tives. Previous works accelerated collectives for specific scenarios
by changing the radix of the collective algorithms. However,
these approaches fail to explore the interplay between modern
hardware features, such as multi-port networks, and software
features, such as message size. In this paper, we present a novel
approach that uses system-agnostic, generalized (i.e., variable-
radix) algorithms to capture relevant features and provide broad
speedups for upcoming exascale-class supercomputers.

We identify hardware commonalities found on announced
exascale systems and three omnipresent communication ker-
nels (binomial tree, ring, and recursive doubling) that can be
generalized to better leverage these features, creating 10 total
implementations. For each kernel, we develop analytical models
to intuit algorithm performance with varying radix values.

Experiments on the world’s first exascale supercomputer
(Frontier at ORNL) and a pre-exascale system (Polaris at ANL)
show that our generalized algorithms outperform the baseline
open-source and proprietary vendor MPI implementations by a
significant margin, up to over 4.5x. We empirically determine
optimal algorithms and parameter values, identifying where the
analytical models are accurate and where hardware features
directly determine performance. Most notably, we show how a
single, system-agnostic implementation of a generalized algorithm
can optimize for multiple hardware/software features across
multiple systems.

Keywords-Exascale computing, collective communication, MPI

I. INTRODUCTION

As the HPC community enters the “exascale” era, commu-
nication performance is more critical than ever. Frontier [3],
the first exascale system on the TOP500 list, hightlights the
need for improved communication as each multi-GPU/CPU
node requires a steady flow of data. In this work, we focus on
Message Passing Interface (MPI) collective operations, which
are among the most popular communication primitives. Col-
lectives consume 25–50% (or more) of the overall execution
time of current/future applications [10], [26], [25], [35].

TABLE I: Our 10 Collective Algorithms
Base Kernel Generalized

Kernel
Collective Operations

Binomial K-nomial MPI Reduce, MPI Bcast,
MPI Allgather, MPI Allreduce

Recursive
Doubling

Recursive
Multiplying

MPI Bcast, MPI Allgather,
MPI Allreduce

Ring K-Ring MPI Bcast, MPI Allgather,
MPI Allreduce

Both the main open-source implementations of the MPI
standard, MPICH [1] (the focus of our work) and Open
MPI [15], implement a limited set of algorithms per col-
lective. Previous works have developed generalized collec-
tive algorithms (see §II and §VII), which enable users to
optimize the radix of the algorithm. However, these efforts
are specialized for specific scenarios (e.g., a specific network
topology [34], small message size allreduce [32], or intranode
broadcast [33]), and the broader efficacy of the strategy is
unknown. As a result, generalized (i.e., variable-radix) al-
gorithms appear very sparsely in current implementations of
MPI, sacrificing performance on modern HPC systems.

In this work, we study the usefulness of generalized al-
gorithms for exascale systems. We first identify hardware
features shared among the upcoming exascale supercomputers
and algorithm generalizations that could better leverage them
(§II). Then, we design system-agnostic generalizations of three
major communication patterns (i.e., kernels): binomial (§III),
recursive doubling (§IV), and ring (§V) inspired by our iden-
tified generalizations [33], [32], [17]. We use our kernels to
implement 10 algorithms for the four most common collective
operations (see Table I). For each generalized algorithm, we
create analytic models and compare with the non-generalized
version, creating intuition regarding the optimal radix values.

Then, we marry intuition with empirical analysis. For our
evaluation, we integrate our new algorithms into MPICH and
experiment on Frontier and Polaris [4] (a pre-exascale system
at ANL). Our collective algorithms improve performance by



1–4.5x (§VI). We compare our results with our analytical
models. We identify performance variations across parameters,
algorithms, scales and machines. We specify where the models
are accurate, and we pinpoint production/system realities that
overtake our theory in other cases. Finally, we also create
a new algorithm selection configuration for MPICH, so that
generalized algorithms may be leveraged automatically on
exascale systems.

We summarize our contributions as follows:
• We develop generalized communication kernels that opti-

mize for the commonalities of exascale systems, creating
10 collective algorithms;

• We create system-agnostic analytical models for each new
algorithm to understand their theoretical performance;

• We achieve 1-4.5x speedups on Frontier, the world’s first
exascale system, and Polaris, a pre-exascale system, and
create a new configuration to automate these speedups;

• We highlight how, surprisingly, a single, system-agnostic
implementation of a generalized algorithm can optimize
for multiple hardware features across multiple systems.

II. BACKGROUND

Here we describe MPI collective operations and hardware/-
software features of exascale systems. We identify algorithm
generalization techniques that can better leverage them.

A. MPI Collective Operations

MPI is the de facto standard communication interface for
HPC applications, and collective operations are MPI’s most
popular primitive. Collectives abstract away point-to-point
messages in favor of program-wide communication patterns.

Collectives consume a large percentage of the overall run-
time of HPC applications. Chunduri et al. found that MPI
collectives alone account for 20%-50% of application runtime
on two production supercomputers in 2018 [10]. A profile of
the Exascale Computing Project’s (ECP) Proxy Application
Suite 4.0 found the expected workload of future exascale
systems spend 40% or more of their overall runtime on
collectives [35]. These studies indicate that optimizing MPI
collectives will accelerate important applications.

B. Collective Performance on Exascale Hardware

Frontier and the next expected exascale supercomputers
(e.g., Aurora, El Capitan) share multiple features that impact
collective performance. Here we list the relevant features and
pinpoint algorithm generalization techniques to leverage them.

1) Network Topology: Exascale networks (including Fron-
tier) use the dragonfly topology [24], which is a two-layer
topology design that was introduced relatively recently. Its
fully connected groups and hierarchical design minimizes
the latency between nodes at large scale. One advantage of
dragonfly is that it uses high radix virtual switches and global
adaptive routing to ensure that there exists a shortest path
between any two nodes. Therefore, topology-aware general-
ized algorithms for traditional HPC interconnects (e.g., torus,

hypercube) that use non-minimal routing [34] will not be ef-
fective. Instead, we design minimal communication algorithms
that leverage other hardware features (discussed below).

2) Multi-Port Nodes & Message Buffering: In exascale
supercomputers, high network bandwidth is necessary to sup-
port the computational power of multi-CPU/GPU nodes. To
meet this need, exascale networks assign subsets of GPUs to
dedicated network links. For example, each node on Frontier
includes four 200 Gb/s links (one per 2 GPUs). Furthermore,
non-blocking send/receive primitives in software enable the
buffering of multiple messages simultaneously beyond the
number of physical ports. Message buffering is critical to
overlap the message submission latency of smaller messages.

Collective algorithms must employ multi-port functionality
and message buffering to fully utilize exascale systems. How-
ever, in popular communication patterns such as binomial tree
and recursive doubling, each process only communicates with
one other process at a time, thus they only buffer a single
message. To solve this challenge, we propose two generalized
algorithms, k-nomial and recursive multiplying.

Previous works have presented generalizations for limited
circumstances, namely intranode broadcast [33] and small
message (<4kB) allreduce [32] We develop new generalized
algorithms inspired by these strategies to exploit multi-port
networks and message buffering. We use the variable radix
of these algorithms to elegantly capture the interplay between
hardware and software to optimize for exascale systems.

3) Intranode Links: Applications on multi-GPU node-
sytems may assign a separate MPI process to each GPU. For
example, applications on Frontier commonly use 8 MPI pro-
cesses per node. These processes communicate via dedicated
higher-bandwidth hardware links (e.g., NVLink, InfinityFab-
ric) that provide higher performance compared to the internode
network. However, the predominant communication kernel for
large (i.e., bandwidth-bound) message sizes, the ring kernel,
does not differentiate between link types, slowing the entire
algorithm to match the slower connections.

To address this issue, we propose a generalized “k-ring”
kernel. Previous work on a new reduction algorithm showed
how a hierarchical strategy can better saturate a heterogeneous
network structure [17]. Combining this idea with the ring
kernel, we better utilize the high-bandwidth intranode links
found on exascale systems.

In summary, by analysing the major factors for algorithm
performance, we identify three promising generalizations (k-
nomial, recursive multiplying, and k-ring), which all expose
their radix as a tunable parameter. We proceed to explain our
generalized algorithms and use analytical models to predict
how changing the parameter values will affect performance.

III. BINOMIAL TREE AND K-NOMIAL TREE ALGORITHMS

The first communication kernel we generalize is the bino-
mial tree algorithm. Binomial is typically the optimal choice
for small message sizes (<16KB), where the limiting factor for
performance is point-to-point latency. Binomial tree minimizes
the effect of latency by overlapping communications.

2



A. The Binomial Tree Algorithm

A binomial tree is a recursive tree structure where the sub-
tree at each non-leaf node is the same as the sub-tree at
that node’s first child. Figure 1 shows an example binomial
tree communication for MPI Gather on 6 processes and the
prospective placement of two more processes. The identical
sub-trees enable parallelism, and the first “round” of over-
lapped communications is highlighted in green.

B. Binomial Tree Algorithm Cost

We now define the cost model of the binomial algorithm
given a specified number of processes p. We use the common
(α, β) model [18]. In this model, the execution time of a point-
to-point communication is τ = α+β∗n. α (latency) represents
the startup cost, β (bandwidth) is the per-byte cost, and n is
message size (bytes). Intuitively, α determines performance
for small messages, while β ∗ n controls larger messages.
Collectives are composed of point-to-point messages between
p processes, so we model them by scaling the equation by (p).
For example, a naı̈ve broadcast, where the root sends to every
process sequentially, is thus τ = p(α+β∗n). For the reduction
collectives, we also include γ (per-byte computation cost).
Collective algorithms overlap point-to-point communications
to reduce the impact of α or β. Note that we use the same
symbols/model in all analyses.

The costs of binomial tree algorithms for the simpler
collectives are shown in (1).

T (n, p) =



log2(p)α+ n log2(p)β Bcast

log2(p)α+ n log2(p)β

+n log2(p)γ Reduce

log2(p)α+ np−1
p β Gather

(1)

Allgather and allreduce are implemented using a gather or
reduce followed by a bcast, as shown in (2).

T (n, p) =


log2(p)α+ n(log2(p) +

p−1
p )β Allgather

log2(p)α+ n(log2(p) +
p−1
p )β

+n log2(p)γ Allreduce
(2)

In these models, the recursive tree structure causes the
latency overhead α to scale logarithmically with the number of
processes, p. Hence, the algorithm performs well for latency-
bound, small message operations.

C. The K-nomial Tree Algorithm

The goal of the k-nomial generalization is to further reduce
the latency penalty for small message collectives. Thanks
to overlapping communications, the latency cost of a basic
binomial tree is the latency of a point-to-point communication
times the depth of the tree. Therefore, decreasing the depth of

5

4
Process 4

Process 6

Process 7Process 5

2

3

0

Process 2

Process 3

Process 0

1
Process 1

Fig. 1: Binomial tree algorithm for gather. The recursive
structure allows all sub-trees to be processed in parallel.

543210
Process 3

Process 5Process 4
543210 54321

543210

Process 7Process 2

Process 0

Process 6

Process 1 Process 8
543210543210

Fig. 2: Trinomial tree algorithm (k=3) for gather. Decreased
tree depth increases the parallelism per subtree.

the tree can reduce the overall communication latency.
Binomial trees have an assumed radix of 2, which we

generalize to create the k-nomial tree algorithm. Figure 2
shows a trinomial tree (k = 3), still with 6 processes.
In a full k-nomial tree, the sub-trees rooted at a non-leaf
node is identical to the sub-tree at that node’s first (k − 1)
children. Nodes 6, 7, and 8 are, again, placeholders showing
the structure of a complete trinomial tree. Notice how in Figure
1, adding a potential 8th node would increase the depth of the
tree. However, Figure 2 shows how a trinomial tree can hold
up 9 nodes without increasing the depth.

Increasing the radix of k-nomial tree flattens the structure by
overlapping communications within a given level of the tree.
In Figure 2, the messages from processes 1 and 2 to 0 (and
4+5 to 3) are executed simultaneously as highlighted by the
green arrows. To overlap these messages, we leverage multi-
port/message buffering (§II-B2), so that a single endpoint can
send/receive multiple messages simultaneously.

D. K-nomial Tree Algorithm Cost

K-nomial tree algorithms change constants in the cost
model, allowing the user to tune the impact of each term.
The costs of the k-nomial tree algorithms are shown in (3).

T (n, p, k) =



logk(p)α+ (k − 1)n logk(p)β Bcast

logk(p)α+ (k − 1)n logk(p)β

+(k − 1)n logk(p)γ Reduce

logk(p)α

+(k − 1)n(logk(p) +
p−1
p )β Allgather

logk(p)α

+(k − 1)n(logk(p) +
p−1
p )β

+(k − 1)n logk(p)γ Allreduce
(3)

3



Larger k values decrease the effect of latency (α) and in-
crease the effect of the bandwidth (β). For very small message
sizes, bandwidth is a non-factor, so we expect increasing k to
improve performance. Smaller k values should perform better
for larger messages when bandwidth is the limiting factor.

In these models, we assume multiport/message buffering
enable perfect overlapping of messages with shared endpoints.
The optimal k value and the performance gain from the k-
nomial algorithm are dependent on this assumption. An ideal
overlapping would result in an optimal k value for very small
messages at or near p. However, it is possible that the physical
number of network ports caps the number of overlapping
communications per endpoint, lowering the optimal k.

IV. RECURSIVE DOUBLING AND RECURSIVE
MULTIPLYING ALGORITHMS

We now consider the recursive doubling algorithm, which
performs best for small-to-medium message sizes (1B-512kB).
For these sizes, latency is again the dominant bottleneck. In
current MPI implementations, recursive doubling is commonly
used for small-to-medium message sizes because it minimizes
the number of sequential communication rounds.

A. The Recursive Doubling Algorithm

Recursive doubling is a pairwise exchange algorithm where
during every round, each process is assigned a peer with which
to exchange information. As an example, consider Figure 3,
which depicts a recursive doubling allgather with 4 processes.
In total, there are two communication rounds. In the first
round, processes exchange data with peers that are 20 = 1
apart. Peers are formed from groups of size 20 = 1 between
odd and even-numbered groups. In the second round, processes
in odd and even groups of size 21 = 2 exchange their
accumulated data with peers that are 21 = 2 apart. The amount
of data exchanged doubles every round.

B. Recursive Doubling Algorithm Cost

The cost models for the recursive doubling algorithm as-
suming a power-of-two number of nodes are shown in (4).

T (n, p) =


α log2 p+ βnp−1

p Allgather, Bcast

(log2 p) (α+ (β + γ)n) Allreduce
(4)

The cost of round i is given by (5).

Ti(n, p) =


α+ βn 2i−1

p Allgather, Bcast

α+ (β + γ)n Allreduce

(5)

Like binomial, recursive doubling scales logarithmically
with latency, making it a good choice for smaller messages.

Process 0 Process 1 Process 3Round
0

Process 2
1 2 3

0 1 2 301 23

0 21 30 12 3 2 30 12 30 1

1

2

Fig. 3: Recursive doubling for allgather with 4 processes.

C. The Recursive Multiplying Algorithm

Recursive doubling, by only doubling the amount of data
sent in each round, can induce unnecessary latency with many
rounds of small message sizes. Our recursive multiplying al-
gorithm balances the latency and bandwidth trade-off through
the number/size of rounds.

Recursive multiplying introduces parameter k that controls
the number of communication partners each round. For each
round i, every process exchanges data between k − 1 other
processes spaced a multiple of ki−1 apart, with the specific
pairings chosen by dividing p processes into ki groups.

Figure 4 shows an example recursive multiplying implemen-
tation of allgather with p = 9 processes and k = 3. Despite the
added processes, the allgather still completes in just 2 rounds.
Sending more messages per round decreases the number of
rounds, improving performance for small-medium messages.

D. Recursive Multiplying Algorithm Cost

The cost model of the recursive multiplying algorithm in
(6) is similar to (4) except for the recursive base k.

T (n, p, k) =


α logk p+ βnp−1

p Allgather, Bcast

(logk p)

· (α+ (β + γ) (k − 1)n) Allreduce
(6)

The parameter k increases the per-round cost of the recursive
multiplying algorithm. The cost for the ith round is now (7).

Ti(n, p, k) =


α+ βn (k−1)ki−1

p Allgather, Bcast

α+ (β + γ)(k − 1)n Allreduce

(7)

The per-round bandwidth and computation costs increase to
accommodate multiple messages per round. The validity of
this strategy once more depends on the overlapping capabilities
of the multiport network and message buffering (§II-B2).

V. RING AND K-RING ALGORITHMS

Lastly, we consider the ring algorithm. Ring is used for
larger messages, where the communication bottleneck shifts to
bandwidth. The ring algorithm provides a bandwidth-optimal
implementation by using neighbor-only communication.

A. The Ring Algorithm

In the ring algorithm, processes only communicate with
their two neighboring processes. Each round, every process
receives new data from its left neighbor and forwards the
received data from the previous round to its right neighbor

4



Round

1

2

Round Process 0 Process 1 Process 2 Process 3 Process 4 Process 5 Process 6 Process 7 Process 8
0 1 2 3 4 5 6 7 8

0 1 2 10 2 20 1 3 4 5 4 53 543 6 87 7 86 876

0 1 2 3 4 5 6 87 0 1 2 3 4 5 6 87 0 1 2 3 4 5 6 87 0 1 2 3 4 5 6 87 0 1 2 3 4 5 6 87 0 1 2 3 4 5 6 87 0 1 2 3 4 5 6 87 0 1 2 3 4 5 6 87 0 1 2 3 4 5 6 87

Process 5Process 0 Process 1 Process 2 Process 3 Process 4Process 6 Process 7 Process 8

Fig. 4: Recursive multiplying for allgather. Each round, processes exchange with two other nodes using a power-of-3 offset.

Process 0 Process 1 Process 3Round

1

2

3

4

5

Process 5Process 4Process 2
0

50

540

5430

54320

543210

1

1

1 5

1 54

1 543

1 5432

0

0

0

0

0

2

21

21

21 5

21 54

21 5430

0

0

0

3

32

321

3210

321 5

321 540

0

4

43

432

4321

4321

4321 50

0

5

54

543

5432

54321

543210

Fig. 5: Ring algorithm for allgather. In each round, processes
forward data to their cyclic adjacent neighbors.

in a ring-like fashion. Figure 5 gives an example of the ring
algorithm used for the allgather collective with 6 processes.

B. Ring Algorithm Cost

We define the cost model for the ring algorithm for allgather,
allreduce, and part of bcast in (8).

T (n, p) = (p− 1)Ti (8)

Given p processes, the ring algorithm will have (p−1) rounds
of communication, where the single-round cost Ti is (9).

Ti(n, p) =


α+ β n

p Allgather, Bcast

α+ β n
p + γ n

p Allreduce
(9)

When compared to the recursive doubling algorithm, ring
has a worse latency term (log → linear) and equivalent
bandwidth term (both linear). Nonetheless, ring is preferred
for large messages in practice because the neighbor commu-
nication minimizes network hops and congestion, which would
limit bandwidth.

Given sufficiently large message sizes, the cost of the ring
algorithm reduces roughly to (10), which is independent of
latency and the number of processes.

T (n) =


βn Allgather, Bcast

βn+ γn Allreduce
(10)

C. The K-Ring Algorithm

The classic ring algorithm is optimized for bandwidth, but
it does not consider the extremely high-bandwidth intranode
links on modern supercomputers (§II-B3). When applications
use one MPI process per GPU on exascale systems, the more
powerful links create a discrepancy in communication cost

Process 0 Process 1 Process 3Round

1

2

3

4

5

Process 5Process 4Process 2
0

0 2

0 21

30 21

5320 1

543210

1

1

1

1 4

1 43

1 5432

0

0

0

0

0

2

2

2

2

21

21

21 5

21 4

21 5430

0

0

0

5

3

3

3

30

32 5

321 540

0

5

54

4

54

4

43

43

431

431

4321 50

0

5

5

5

5

54

543

5432

54321

543210

Fig. 6: K-ring algorithm for allgather. Two faster intranode
rounds alternate with a slower internode round.

between processes in the ring algorithm. This heterogeneity
is unfavorable for the ring algorithm which has an implicit
barrier between rounds, so processes with intranode neighbors
are starved for data by the slower internode links.

To reduce the impact this bottleneck, our generalized k-ring
algorithm breaks the communication into multiple, smaller
“rings.” k determines the size of the smaller ring groups; for
p total processes, there are p

k groups. Every process has two
pairs of left (receive) and right (send) neighbors, one within
its group and one with another group. For the communication
pattern, the k-ring algorithm is carried out in a series of
alternating intra-group communication rounds and a single
inter-group round using the two ring structures.

An example of the k-ring algorithm for MPI Allgather with
6 processes and group size k = 3 is shown in Figure 6.
In the first 2 rounds, processes within groups communicate
in rings of size k. Therefore, the third round is inter-group
communication with processes passing data to their inter-group
neighbors. Following the third round, another two rounds of
intra-group communication complete the allgather.

The goal of the k-ring algorithm is to prevent bottleneck
links from slowing the entire communication. Within the
smaller rings, communication is faster and more consistent
because processes are likely to be physically closer (e.g.,
within the same node) in the system topology. Inter-ring com-
munication rounds are slower, but they are far less frequent
(e.g., in Figure 6, there are 4 intra-ring rounds to only 1 inter-
ring round).

D. K-Ring Algorithm Cost

With the per-round cost Ti, the k-ring algorithm cost model
is split into g(k − 1) intra-group and (g − 1) inter-group
communication rounds, where the number of groups is g = p

k .
The intra-group and inter-group costs are shown in (11).

5




Tintra(n, p, k) = g(k − 1)Ti

Tinter(n, p, k) = (g − 1)Ti

(11)

Hence, the total cost is (12).

T (n, p, k) = Tintra + Tinter

= (p− 1)Ti

(12)

The advantage of k-ring is the reduction of data exchanged
between groups. In the example shown in Figure 6, given each
partition of size ϕ, the total inter-group data sent and received
by Group 0 is 6ϕ. For the ring algorithm, the total inter-group
data sent and received would be 10ϕ. To generalize this idea
for p nodes and an intra-ring group size of k, the amount of
data sent/received by a group for the k-ring algorithm is (13).

Dk-ring(n, p, k) = 2n
p− k

p
(13)

This formula reduced to the classic ring algorithm (k=1) is
(14).

Dring(n, p) = 2n
p− 1

p
(14)

Should there be bandwidth bottlenecks between groups of
processes, the generalized ring algorithm can be chosen with
an appropriate group size k to reduce its effect.

Implementation of the k-ring algorithm for allgather and
bcast are identical since bcast uses a “scatter-allgather” algo-
rithm. The implementation of allreduce is slightly different as
the partitions are offset by 1.

Given the difference between intranode and internode links
on exscale systems, we expect the best radix value for k-ring
to be the number of processes per node. However, there may
be additional bottlenecks between nodes that are farther apart.
The k-ring algorithm gives us the flexibility to explore the
realities of the intranode and internode topologies.

VI. EVALUATION

We now describe how we integrated our new algorithms
into MPICH, detail our experimental methodology to test their
performance, and analyze the results.

A. MPI Library Integration

We implemented each new algorithm in the MPICH source
code based on the non-generalized version if it exists. Imple-
mentations range from 100–400 lines of code, with MPI Bcast
being the longest because of the multi-phase communication
for recursive multiplying and k-ring. The largest burden was
ensuring correctness for the many corner cases induced by our
generalizations (e.g., non-uniform group sizes for the recursive
multiplying and k-ring algorithms).

B. Experimental Methodology

Our performance evaluation uses Frontier, the world’s first
exascale supercomputer, at Oak Ridge National Laboratory.
Frontier contains 9,408 compute nodes, each equipped with
one 64-core AMD EPYC 7A53 CPU, four AMD MI250X
(eight logical GPUs), and 512 GB of DDR4 memory. The
GPUs within each node are connected to each other via Infinity
Fabric and the network via 4x200 Gb/s links.

We compare our work against MPICH [1] and Cray MPI
using the OSU microbenchmark suite [2]. For each exper-
iment, we fixed MPICH’s algorithm selection to the non-
generalized version of the comparative algorithm, meaning we
test our k-nomial implementation against MPICH’s binomial
implementation, etc. This practice isolates the improvement
gained by generalization. For Cray MPI, we compare against
its default selections to highlight the total speedup from the
optimal generalized algorithm and parameter value. Cray MPI
is the vendor-supported, state-of-the-art MPI implementation
on Frontier. Therefore, these values represent the speedup a
user could experience due to the adoption of our contributions.

We ran all our experiments on Frontier in both 32-node
and 128-node configurations. We tested with both common
programming models for the machine: 1 MPI process per node
(PPN) (1 MPI process per GPU) and 8 MPI PPN (MPI +
X). We performed each experiment multiple times to account
for runtime variance and selected representative trials for
visualization and analysis. Overall, we found our results to be
very similar for both 32 nodes and 128 nodes and with 1 MPI
process per node and 8 processes per node. We proceed to
focus on our 128 node with 1-PPN results and highlight the
scenarios where the results diverge.

Beyond our core set of results, we also include experiments
using 1024 nodes on Frontier to measure how the performance
improvements from generalization scale to leadership-class
applications. Due to limited resources and job length, we are
only able to test our most promising configurations identified
at smaller scale. Finally, we test how the improvements
translate to other exascale hardware by using another system,
Polaris. Polaris is a pre-exascale system for Aurora, the
next anticipated exascale supercomputer at Argonne National
Laboratory. Polaris contains 560 multi-GPU nodes connected
by a dragonfly network, each with one 32-physical-core AMD
EPYC Milan 7543P, four NVIDIA A100 GPUs fully con-
nected with 600GB/s NVLink, 512GB of DDR4 memory,
and two Slingshot network ports via 64 GB/s PCIe Gen4 for
internode communication.

C. Frontier Results

To summarize our experiments, we selected representative
operations for each generalized kernel. For k-nomial, we chose
MPI Reduce because k-nomial is the only new generalized
algorithm for MPI Reduce. For recursive multiplying, we
show results for MPI Allreduce because it is the most pop-
ular collective for exascale applications [35]. For the k-ring
algorithms, we selected MPI Bcast because it is utilizes the

6



4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B

1K
iB

2K
iB

4K
iB

8K
iB

16
Ki

B
32

Ki
B

64
Ki

B
12

8K
iB

25
6K

iB
51

2K
iB

1M
iB

Message Size

0.9

1.0

1.1

Sl
ow

 v
s.

 N
on

-G
en

(a) K-nomial (MPI Reduce)

4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B

1K
iB

2K
iB

4K
iB

8K
iB

16
Ki

B
32

Ki
B

64
Ki

B
12

8K
iB

25
6K

iB
51

2K
iB

1M
iB

Message Size

0.9

1.0

1.1

Sl
ow

 v
s.

 N
on

-G
en

(b) Recursive Mult. (MPI Allreduce)

1B 2B 4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B

1K
iB

2K
iB

4K
iB

8K
iB

16
Ki

B
32

Ki
B

64
Ki

B
12

8K
iB

25
6K

iB
51

2K
iB

1M
iB

2M
iB

Message Size

0.9

1.0

1.1

Sl
ow

 v
s.

 N
on

-G
en

(c) K-ring (MPI Bcast), 8 PPN
Fig. 7: Message Size vs. Slowdown (Lower is Better), 128
Nodes w/ 1 or 8 Process(es) Per Node on Frontier. General-
ization does not result in slowdown.

MPI Allgather ring algorithm, so we encapsulate both collec-
tives and cover all four operations across these selections.

1) Generalized vs. Non-Generalized: In Figure 7, we plot
the slowdown of the generalized implementation of each
algorithm using the default parameter value (k = 2, k = 2,
and k = 1) versus the fixed-radix implementation in MPICH.
In this configuration, both algorithms are logically identical.
These experiments ensure that generalization does not sacrifice
performance from MPICH’s low-level software tricks (e.g.,
bitwise operations) that require a fixed radix. In these graphs,
a value of 1.0 means that the generalized and non-generalized
algorithms have identical performance. Above 1.0 means that
the generalized version is slower, and below 1.0 means that
the generalized version is faster.

Across all three plots, we see that generalization has a
minimal effect on the default radix performance. Slowdowns
do not exceed 1.06x, and the generalized algorithms slightly
outperform the fixed-radix version on average, thanks to our
careful implementations and noise on the machine. With our
implementation proven effective, we use our algorithms with
the default radix as a baseline in future figures to further
eliminate potential sources of variation.

2) Sensitivity to Parameter Value: Now, we describe how
varying the parameter value affects performance. Figure 8
plots the parameter values on the x-axis and the latency on
the y-axis in microseconds. We plot various message sizes as
separate lines on the graph.

We begin with k-nomial in Figure 8(a). For the k-nomial
algorithm, software message buffering is the dominant per-
formance feature, and the latency/bandwidth trade-off of the

message size determines the optimal parameter value. For very
small messages (<128 bytes), large parameter values (k=128,
i.e., k = the number of processes) greatly outperform small
parameter values. As the message size increases, the optimal
parameter value decreases. This smooth trend follows our
analytical model. Message buffering and multiport function-
ality allow us to overlap many communications and garner
significant speedups, which we will quantify in Figure 9.

These results reveal that the network’s physical limitation
of 4 network ports does not hamper performance. We believe
this hardware restriction does not matter because the amount
of shared-endpoint communications is relatively small for k-
nomial. The one-sided nature of the algorithm means that each
thread is only sending or receiving k messages per round.

Among the other collectives, MPI Bcast had a pattern sim-
ilar to MPI Reduce. For MPI Allgather and MPI Allreduce,
other algorithms outperformed k-nomial for all message sizes,
rending their trends irrelevant. This result is logical because
the k-nomial kernel maps more naturally to unbalanced collec-
tives where there is a single node sending/receiving the data.

The next algorithm is recursive multiplying in Figure 8(b).
For the recursive multiplying algorithm, the number of net-
work ports is the dominant performance feature, and the
number of ports per node determines the optimal k-value. For
all message sizes regardless of magnitude, k values at or near 4
(the number of ports per node) are the best-performing choice
for MPI Allreduce. This result contradicts our expectations
based on the analytical models. We believe it occurs because
compared to k-nomial, the number of simultaneous messages
increases much faster with larger k values. In recursive multi-
plying, each process sends and receives k messages per round,
further stressing the multiport network.

MPI Allgather and MPI Bcast favor k=4 or a multiple of
k=4. They do not require receiver-side computation like a
reduction, which creates less predictable performance.

The last algorithm is k-ring in Figure 8(c), which we test
with 8 processes per node for the 1-MPI-process-per-GPU
programming model. For the k-ring algorithm, the intranode
links are the dominant performance feature, and the number of
processes per node determines the optimal k-value. For larger
message sizes, k = 8 is the most performant parameter value.
Despite the analytic model not presenting a clear benefit of k-
ring, we measure a significant improvement. When k = 8, the
“intragroup” and “intergroup” communication steps are effec-
tively “intranode” and “internode” steps, allowing much of the
communication to leverage the superior intranode interconnect
without implicit synchronization with internode messages.

As part of the MPI Bcast algorithm, MPI Allgather natu-
rally sees similar benefit from k-ring. For MPI Allreduce, the
reduce-scatter-allgather algorithm (which can also leverage the
MPI Allgather k-ring algorithm) generally outperforms ring
for large message allreduces.

3) Speedup: In Figure 9, we show the speedup of each
collective operation by selecting the optimal algorithm for
each message size using our complete results. We denote the
algorithm using a color overlay (grey is k-nomial, blue is

7



2 3 4 5 8 12 16 24 32 64 128
Parameter Value (K)

4 s
7 s10 s

40 s
70 s100 s

400 s
700 s1ms

4ms
7ms10ms

La
te

nc
y

Message Size
4B
4KiB
16KiB
128KiB
1MiB

(a) K-nomial (MPI Reduce)

2 3 4 5 8 12 16 24 32 64 128
Parameter Value (K)

40 s
70 s

100 s

400 s
700 s

1ms

4ms
7ms

10ms

40ms
70ms

La
te

nc
y

Message Size
4B
4KiB
16KiB
128KiB
1MiB

(b) Recursive Mult. (MPI Allreduce)

2 3 4 5 8 12 16 24 32 64 128
Parameter Value (K)

700 s

1ms

4ms

7ms

La
te

nc
y Message Size

4B
4KiB
16KiB
128KiB
1MiB

(c) K-ring (MPI Allgather), 8 PPN
Fig. 8: Parameter Value (K) vs. Latency (Lower is Better), 128 Nodes w/ 1 or 8 Process(es) Per Node on Frontier. For all
algorithms, the parameter value has a significant impact on performance.

4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B

1K
iB

2K
iB

4K
iB

8K
iB

16
Ki

B
32

Ki
B

64
Ki

B
12

8K
iB

25
6K

iB
51

2K
iB

1M
iB

Message size

1

2

3

4

Sp
ee

d-
up

k=128 k=128 k=128

k=24 k=24 k=24
k=2 k=2 k=2 k=2

Compared Against
Cray MPI
Non-Gen Alg

(a) MPI Reduce

1B 2B 4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B

1K
iB

2K
iB

4K
iB

8K
iB

16
Ki

B
32

Ki
B

64
Ki

B
12

8K
iB

25
6K

iB
51

2K
iB

1M
iB

2M
iB

Message size

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Sp
ee

d-
up

k=8 k=16 k=16 k=8 k=2 k=2 k=2 k=12 k=16

k=16 k=16

Compared Against
Cray MPI
Non-Gen Alg

(b) MPI Bcast

1B 2B 4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B

1K
iB

2K
iB

4K
iB

8K
iB

16
Ki

B
32

Ki
B

64
Ki

B
12

8K
iB

25
6K

iB
51

2K
iB

1M
iB

2M
iB

Message size

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

d-
up

k=8 k=8

k=8 k=8
k=8

k=8

k=8

k=32

k=16

k=2 k=2

Compared Against
Cray MPI
Non-Gen Alg

(c) MPI Allgather

4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B

1K
iB

2K
iB

4K
iB

8K
iB

16
Ki

B
32

Ki
B

64
Ki

B
12

8K
iB

25
6K

iB
51

2K
iB

1M
iB

Message size

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Sp
ee

d-
up k=5 k=5 k=5

k=5 k=5
k=5 k=5

k=3 k=2 k=2

Compared Against
Cray MPI
Non-Gen Alg

(d) MPI Allreduce

Fig. 9: Message Size vs. Speedup (Higher is Better), 128 Nodes w/ 1 Process Per Node for on Frontier. Generalization provides
varying speedups over both baselines in most cases.

recursive multiplying). We did not encounter situations where
k-ring is optimal over recursive doubling, including additional
experiments to study even larger message sizes. We believe the
k-ring algorithm gets outperformed because jobs of smaller
size are dispersed across the 9000+ nodes in the system,
eliminating k-ring’s neighbor communication advantage.

The X-axis is once again the message size, and the Y-axis
is the speedup over the two baselines. The dark green line
represents the speedup over the default radix of the algorithm
to show the speedup from generalization alone. The red line

represents the speedup over Cray MPI. The Cray MPI baseline
showcases how a current production user stands to benefit
from our contributions. Cray MPI occasionally outperforms
our algorithms most likely due to other algorithms, which may
be proprietary or hardware-accelerated. In these cases, gener-
alization is orthogonal and may provide additional speedup
despite our results. On the other hand, when the speedup vs.
Cray MPI is much greater than vs. the other baseline, Cray
MPI is likely using a sub-optimal algorithm.

Now we analyse the results shown in each figure. The first

8



one is MPI Reduce in Figure 9(a), for which k-nomial is our
only generalized algorithm. As expected from the previous
section, the speedup starts out high (over 2.0x) and erodes
as the message size increases for the default-parameter-value
baseline. Surprisingly, the Cray MPI baseline matches the
small-message speedup, meaning that it is also employing the
binomial algorithm instead of the more competitive “linear”
algorithm. Then, the speedup over Cray MPI soars to over
4.5x, where we believe it is incorrectly switching algorithms.

The second one is MPI Bcast in Figure 9(b), which typi-
cally sees little speedup. For message sizes under 256KB, we
observe small (1.05x-1.2x) speedups over binomial/recursive
doubling and no speedup over Cray MPI. For large messages,
recursive multiplying accomplishes its only significant per-
formance improvements (up to nearly 2.0x over Cray MPI)
with k=16. For MPI Bcast, multiples of four are best for the
recursive multiplying parameter value.

Third is MPI Allgather, whose speedups are shown in Fig-
ure 9(c). For nearly all message sizes, we see significant (1.4x-
2.0x) speedups over both baselines. Similar to MPI Bcast,
multiples of four are the best parameter value.

The last is MPI Allreduce in Figure 9(d). As we saw in
Figure 8(b), recursive multiplying prefers parameter values
near 4, and it generates significant (1.2x-1.8x) speedups. While
the optimal parameter value is k=5, k=4 is less than 1% worse
on average, meaning the slight win by k=5 is likely noise.
For the largest message sizes in our range, the performance
improvement tails off as expected from our analytical models.

D. Large-Scale Frontier Results

With performance trends established with smaller node
counts, we now study how the performance gains scale up
to 1024 nodes. To keep our experiments tractable at this
size, we could no longer perform a sweep of all parameter
values. Instead, we specifically study how our most promising
trends at smaller scale translate to larger scale. We seek to
show that these parameter values provide turnkey performance
improvements for leadership-class applications.

In Figure 10, we present three figures representing 1024
node performance for the best k-nomial and recursive mul-
tiplying scenarios from smaller scale. In these graphs, we
plot the message size on the x-axis again and the latency in
microseconds of the various configurations on the y-axis. We
include our speedup baselines (Cray MPI and k=2) as lines
on the graph for easy visual comparison.

In Figure 10(a), we see that our performance trends for
MPI Reduce k-nomial remain intact; larger parameter values
provide significant speedup at smaller message sizes. Interest-
ingly, the parameter value equal to the number of processes
(1024) always performs worse than k=128. It appears that at
large scale, the parameter value has an upper bound.

In Figures 10(b)-(c), we present larger scale performance for
MPI Allgather and MPI Allreduce. These experiments created
the most consistent speedups in our smaller-scale tests, and
those trends are replicated here. While there is some noise in
the MPI Allreduce results (e.g., 512KB performs worse than

some larger message sizes), we observe consistent speedup
from k=4 and k=8 until large message sizes.

Overall, our large-scale experiments show how generalized
algorithms can provide meaningful performance gains for
leadership-class use cases.

E. Polaris Comparison

We conclude our evaluation by exploring how generalized
algorithms perform on other pre-exascale hardware, specifi-
cally Polaris. For these plots, shown in Figure 11, we use the
same style as Figure 8. We seek to determine if the same trends
are present on a different pre-exascale system architecture.

For k-nomial and recursive multiplying (Figures 11(a)-
(b)), the results match expectations. Just as on Frontier, the
optimal k-nomial parameter value for very small messages is
close to the number of processes and decreases as message
sizes increases. Again matching Frontier, the optimal recursive
multiplying parameter value is four or eight, which are the
smallest multiples of the two ports per node on Polaris.

For k-ring, however, the parameter value shows minimal
affect. Unlike Frontier, Polaris’ nodes are fully connected with
equal bandwidth between every pair of GPUs. This architec-
ture is less compatible with the k-ring algorithm because many
links within a node go underutilized.

Overall, both k-nomial and recursive multiplying show that
our generalized algorithm findings translate from one exascale
system to another.

F. Evaluation Summary

Overall, our experimental analysis generated many new
findings. For k-nomial, we found the software features (mes-
sage buffering) control performance, and that our analytical
models are fairly accurate for optimizing the generalization.
For recursive multiplying and k-ring, hardware features (mul-
tiport/intranode links) dominate performance, and empirical
analysis contradicted our analytical intuition. We showed how
these same trends also achieve significant speedups at larger
scale and other exascale hardware.

G. Selection Configuration

When collecting our results, we exhaustively benchmarked
every algorithm in MPICH to determine the optimal algorithm-
s/parameters. Using this data and our analyses, we created
a new algorithm/parameter selection configuration file that
incorporates our generalized algorithms. Just by changing
one environment variable to point to our new configuration,
MPICH users can automatically and transparently leverage the
speedups we uncover in this work.

H. Considerations

To ensure the stability of our results, we re-executed
each microbenchmark 4-10x (depending on execution length)
within each trial. We included repetition at every level of our
experimental methodology (within the microbenchmarks, re-
running the microbenchmarks, and running multiple separate
jobs on the systems). Still, when re-running experiments to

9



4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B

1K
iB

2K
iB

4K
iB

8K
iB

16
Ki

B
32

Ki
B

64
Ki

B

Message Size

4 s
7 s10 s

40 s
70 s100 s

400 s
700 s1ms

4ms
7ms10ms

La
te

nc
y

Algorithm
k=2
k=8
k=128
k=1024
Cray MPI

(a) MPI Reduce (K-nomial)

1B 2B 4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B

1K
iB

2K
iB

4K
iB

8K
iB

16
Ki

B
32

Ki
B

64
Ki

B
12

8K
iB

25
6K

iB

Message Size

40 s
70 s

100 s

400 s
700 s

1ms

4ms
7ms

10ms

40ms

La
te

nc
y

Algorithm
k=2
k=4
k=8
Cray MPI

(b) MPI Allgather (Recursive Mult.)

4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B

1K
iB

2K
iB

4K
iB

8K
iB

16
Ki

B
32

Ki
B

64
Ki

B
12

8K
iB

25
6K

iB

Message Size

40 s

70 s
100 s

400 s

700 s
1ms

La
te

nc
y

Algorithm
k=2
k=4
k=8
Cray MPI

(c) MPI Allreduce (Recursive Mult.)
Fig. 10: Message Size vs. Latency (Lower is Better), 1024 Nodes w/ 1 Process Per Node for MPI Reduce, MPI Allgather,
and MPI Allreduce on Frontier. The speedups from generalization are maintained at large scale.

2 3 4 5 8 12 16 24 32
Parameter Value (K)

1 s

4 s
7 s10 s

40 s
70 s100 s

400 s
700 s1ms

4ms
7ms10ms

La
te

nc
y

Message Size
4B
4KiB
16KiB
128KiB
1MiB

(a) K-nomial (MPI Reduce)

2 3 4 5 8 12 16 24 32
Parameter Value (K)

10 s

40 s
70 s

100 s

400 s
700 s

1ms

4ms
7ms

10ms
La

te
nc

y
Message Size

4B
4KiB
16KiB
128KiB
1MiB

(b) Recursive Mult. (MPI Allgather)

2 3 4 5 8 12 16 24 32
Parameter Value (K)

100 s

400 s

700 s

1ms

La
te

nc
y

Message Size
4B
4KiB
16KiB
128KiB
1MiB

(c) K-ring (MPI Bcast), 4 PPN
Fig. 11: Parameter Value (K) vs. Latency (Lower is Better), 32 Nodes w/ 1 or 4 Process(es) Per Node on Polaris. The trends
in how the parameter value affects performance are similar to those observed on Frontier (Figure 8).

select representative trials and develop our understanding, we
encountered significant run-to-run variance, which changed the
optimal algorithm selections and parameter values.

These effects are previously documented [21], but they
are less well understood, particularly on exascale hardware.
Therefore, it is best to view our conclusions as guidelines
or heuristics. We found these guidelines produced consistent,
significant speedups over both the fixed-radix algorithms and
Cray MPI, but we do not claim to have analytically or em-
pirically determined the optimal algorithms/parameters for all
cases. Instead, autotuning tools show the ability to incorporate
the effects of run-to-run variance [22], [40], [39], and we
believe integrating generalized algorithms with these tools is
an exciting future direction.

VII. RELATED WORK

Many past works have optimized collective algorithms.
Seminal work on collective algorithms by Thakur et al. [36],
[37] laid the foundations for the standard set of collective
implementations in MPICH [1]. Other important works include
Bruck’s algorithm [7], the n-way dissemination barrier by
Hoefler et al. [19], and the ring-based all-reduce algorithm
designed by Patarasuk et al. [29].

More similar to this paper, others have also created gener-
alized collective algorithms for specific scenarios. Ruefencht
et al. proposed a generalization of the recursive doubling
algorithm for MPI Allreduce for small message sizes [32].
Ruhela et al. first utilized the k-nomial algorithm to optimize

intranode MPI Bcast [33]. MPI Allreduce k-nomial appears in
Intel MPI, but its use case is unexplained. Hasanov et al. cre-
ated a hierarchical structure across reduction algorithms [17].
Recently, Fan et al. generalized the Bruck’s algorithm [7] by
developing the padded Bruck and two-phase Bruck algorithms
for nonuniform all-to-all communication [12]. Our work is
inspired by and goes beyond these previous efforts by showing
how a single generalized kernel can optimize for multiple
collectives on multiple systems. Additionally, we identify
how the hardware/software features of exascale machines pair
with specific generalization techniques, and we perform new
modelling and empirical analysis to explain how these features
are responsible for the observed speedups.

To further improve collective performance on new and
emerging hardware, many works focus on the development
of new, topology-aware collective algorithms. Bienz et al.
designed a locality-aware Bruck allgather [6]. Gong et al.
proposed a set of network-aware algorithms for MPI bcast,
reduce, gather, and scatter on cloud platforms [14]. Most
recently, Feng et al. simulated collective algorithms specially
designed for the standard dragonfly topology [13]. Our ap-
proach is more general because we do not incorporate the
topology directly into our algorithms; instead, we design
system-agnostic algorithms that consider both the topology
and other features (e.g., multi-port, etc.).

The rising popularity of machine learning has motivated
GPU-centric research. Cai and Liu et al. proposed the Synthe-
sized Collective Communication Library (SCCL) to synthesize

10



optimal algorithms on specific GPU topologies [8]. Leverag-
ing new, collective-specific hardware, Haghi et al. offloaded
collective operations to in-switch hardware accelerators with
two additional modules: a Collective Control Module and a
Reduction Unit [16]. Awan et al. pipelined bcast operations
during deep learning workloads on GPU clusters [5]. Also for
distributed deep learning, Cho et al. [9] decomposed allreduce
operations into parallel reduce-scatter and allgather operations.
These network/application-specific designs are restricted to
the contexts for which they were created. By contrast, our
algorithms are transparent to both applications and hardware,
meaning they can impact a wider variety of systems and users.

Selecting the best collective algorithm for different scenar-
ios requires careful tuning. Many previous works attempt to
accomplish this feat through analytical models [38], [11], [31],
[30], [27], [28]. While these models can be very accurate, they
would require additional arduous customization for new sys-
tems and algorithms. We believe that more recent work using
machine learning (ML) to select collective algorithms is the
most promising direction to incorporate our contributions [20],
[40], [39], [23]. These approaches treat collective algorithms
as a black box and rely on ML to learn their performance
trends. These models could be augmented to predict both
the best algorithm and parameter value for a given scenario,
obviating any need for manual tuning.

VIII. CONCLUSION

In this work, we use a novel, comprehensive approach
to create many new collective algorithms for exascale. By
identifying algorithm generalizations that leverage the features
of exascale systems, we provide a wide-sweeping speedup for
multiple popular collective operations for two distinct exascale
and pre-exascale systems (Frontier and Polaris).

As HPC expands to exascale and beyond, new machines
will continue to increase in size and complexity. Generalized
collective algorithms are a great fit for more complex systems
because they expose easy-to-tune parameters, revealing the
best solution for each system. In the future, we plan to further
alleviate this burden by tying generalized algorithm tuning into
autotuning frameworks.

IX. ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. De-
partment of Energy Office of Science and the National Nuclear
Security Administration, by the U.S. Department of Energy,
Office of Science, under Contract DE-AC02-06CH11357, and
by the U.S. National Science Foundation via award CCF-
2119069.

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.
This research also used resources of the Argonne Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357.

REFERENCES

[1] “MPICH.” [Online]. Available: https://www.mpich.org
[2] “OSU micro-benchmarks.” [Online]. Available: https://mvapich.cse.

ohio-state.edu/benchmarks/
[3] “Frontier user guide,” 2023. [Online]. Available: https://docs.olcf.ornl.

gov/systems/frontier user guide.html
[4] “Polaris user guide,” 2023. [Online]. Available: https://docs.alcf.anl.

gov/polaris/getting-started/
[5] A. A. Awan, K. V. Manian, C.-H. Chu, H. Subramoni, and D. K. Panda,

“Optimized large-message broadcast for deep learning workloads: MPI,
MPI+ NCCL, or NCCL2?” parallel computing, vol. 85, pp. 141–152,
2019.

[6] A. Bienz, S. Gautam, and A. Kharel, “A locality-aware Bruck allgather,”
in Proceedings of the 29th European MPI Users’ Group Meeting, 2022,
pp. 18–26.

[7] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby, “Efficient
algorithms for all-to-all communications in multiport message-passing
systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 8,
no. 11, pp. 1143–1156, 1997.

[8] Z. Cai, Z. Liu, S. Maleki, M. Musuvathi, T. Mytkowicz, J. Nelson,
and O. Saarikivi, “Synthesizing optimal collective algorithms,” in
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 62–75. [Online].
Available: https://doi.org/10.1145/3437801.3441620

[9] M. Cho, U. Finkler, D. Kung, and H. Hunter, “Blueconnect: Decompos-
ing all-reduce for deep learning on heterogeneous network hierarchy,”
Proceedings of Machine Learning and Systems, vol. 1, pp. 241–251,
2019.

[10] S. Chunduri, S. Parker, P. Balaji, K. Harms, and K. Kumaran, “Char-
acterization of MPI usage on a production supercomputer,” in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2018, pp. 386–400.

[11] G. E. Fagg, J. Pjesivac-Grbovic, G. Bosilca, T. Angskun, J. Dongarra,
and E. Jeannot, “Flexible collective communication tuning architecture
applied to Open MPI,” in Euro PVM/MPI, 2006.

[12] K. Fan, T. Gilray, V. Pascucci, X. Huang, K. Micinski, and
S. Kumar, “Optimizing the Bruck algorithm for non-uniform all-to-all
communication,” ser. HPDC ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 172–184. [Online]. Available:
https://doi.org/10.1145/3502181.3531468

[13] G. Feng, D. Dong, and Y. Lu, “Optimized MPI collective algorithms
for dragonfly topology,” in Proceedings of the 36th ACM International
Conference on Supercomputing, 2022, pp. 1–11.

[14] Y. Gong, B. He, and J. Zhong, “Network performance aware MPI
collective communication operations in the cloud,” IEEE Transactions
on Parallel and Distributed Systems, vol. 26, no. 11, pp. 3079–3089,
2015.

[15] R. L. Graham, G. M. Shipman, B. W. Barrett, R. H. Castain, G. Bosilca,
and A. Lumsdaine, “Open MPI: A high-performance, heterogeneous
MPI,” in 2006 IEEE International Conference on Cluster Computing.
IEEE, 2006, pp. 1–9.

[16] P. Haghi, A. Guo, Q. Xiong, R. Patel, C. Yang, T. Geng, J. T.
Broaddus, R. Marshall, A. Skjellum, and M. C. Herbordt, “FPGAs in the
network and novel communicator support accelerate MPI collectives,” in
2020 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2020, pp. 1–10.

[17] K. Hasanov and A. Lastovetsky, “Hierarchical redesign of classic MPI
reduction algorithms,” The Journal of Supercomputing, vol. 73, no. 2,
pp. 713–725, 2017.

[18] R. W. Hockney, “The communication challenge for MPP: Intel Paragon
and Meiko CS-2,” Parallel computing, vol. 20, no. 3, pp. 389–398, 1994.

[19] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm, “Fast barrier syn-
chronization for InfiniBand,” in Proceedings 20th IEEE International
Parallel & Distributed Processing Symposium, 2006, pp. 7 pp.–.

[20] S. Hunold, A. Bhatele, G. Bosilca, and P. Knees, “Predicting MPI
collective communication performance using machine learning,” in 2020
IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2020, pp. 259–269.

[21] S. Hunold and A. Carpen-Amarie, “Reproducible MPI benchmarking
is still not as easy as you think,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 12, pp. 3617–3630, 2016.

11

https://www.mpich.org
https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://docs.alcf.anl.gov/polaris/getting-started/
https://docs.alcf.anl.gov/polaris/getting-started/
https://doi.org/10.1145/3437801.3441620
https://doi.org/10.1145/3502181.3531468


[22] ——, “Autotuning MPI collectives using performance guidelines,” in
Proceedings of the International Conference on High Performance
Computing in Asia-Pacific Region, 2018, pp. 64–74.

[23] S. Hunold and S. Steiner, “OMPICollTune: Autotuning MPI collectives
by incremental online learning,” in 2022 IEEE/ACM International Work-
shop on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), 2022, pp. 123–128.

[24] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” ACM SIGARCH Computer Architecture
News, vol. 36, no. 3, pp. 77–88, 2008.

[25] B. Klenk and H. Fröning, “An overview of MPI characteristics of exas-
cale proxy applications,” in International Supercomputing Conference.
Springer, 2017, pp. 217–236.

[26] I. Laguna, R. Marshall, K. Mohror, M. Ruefenacht, A. Skjellum, and
N. Sultana, “A large-scale study of MPI usage in open-source HPC
applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019, pp.
1–14.

[27] X. Luo, W. Wu, G. Bosilca, Y. Pei, Q. Cao, T. Patinyasakdikul,
D. Zhong, and J. Dongarra, “HAN: A hierarchical autotuned collective
communication framework,” in 2020 IEEE International Conference on
Cluster Computing (CLUSTER), 2020, pp. 23–34.

[28] E. Nuriyev and A. Lastovetsky, “Accurate runtime selection of optimal
MPI collective algorithms using analytical performance modelling,”
arXiv preprint arXiv:2004.11062, 2020.

[29] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms for
clusters of workstations,” Journal of Parallel and Distributed Comput-
ing, vol. 69, no. 2, pp. 117–124, 2009.

[30] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,
and J. J. Dongarra, “Performance analysis of MPI collective operations,”
Cluster Computing, vol. 10, no. 2, pp. 127–143, 2007.

[31] J. Pješivac-Grbović, G. Bosilca, G. E. Fagg, T. Angskun, and J. J.
Dongarra, “MPI collective algorithm selection and quadtree encoding,”
Parallel Computing, vol. 33, no. 9, pp. 613–623, 2007.

[32] M. Ruefenacht, M. Bull, and S. Booth, “Generalisation of recursive
doubling for allreduce: Now with simulation,” Parallel Computing,
vol. 69, pp. 24–44, 2017. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0167819117301199

[33] A. Ruhela, B. Ramesh, S. Chakraborty, H. Subramoni, J. Hashmi,
and D. Panda, “Leveraging network-level parallelism with multiple
process-endpoints for mpi broadcast,” in 2019 IEEE/ACM Third Annual
Workshop on Emerging Parallel and Distributed Runtime Systems and
Middleware (IPDRM). IEEE, 2019, pp. 34–41.

[34] P. Sack and W. Gropp, “Faster topology-aware collective algorithms
through non-minimal communication,” ACM SIGPLAN Notices, vol. 47,
no. 8, pp. 45–54, 2012.

[35] N. Sultana, M. Rüfenacht, A. Skjellum, P. Bangalore, I. Laguna, and
K. Mohror, “Understanding the use of message passing interface in
exascale proxy applications,” Concurrency and Computation: Practice
and Experience, vol. 33, no. 14, p. e5901, 2021.

[36] R. Thakur and W. D. Gropp, “Improving the performance of collective
operations in MPICH,” in Recent Advances in Parallel Virtual Machine
and Message Passing Interface, J. Dongarra, D. Laforenza, and S. Or-
lando, Eds. Springer Berlin Heidelberg, 2003, pp. 257–267.

[37] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” International Journal of High-
Performance Computing Applications, vol. 19, no. 1, pp. 49–66, Spring
2005.

[38] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra, “Automatically tuned col-
lective communications,” in SC’00: Proceedings of the 2000 ACM/IEEE
Conference on Supercomputing. IEEE, 2000.

[39] M. Wilkins, Y. Guo, R. Thakur, P. Dinda, and N. Hardavellas, “AC-
CLAiM: Advancing the practicality of MPI collective communication
autotuning using machine learning,” in 2022 IEEE International Con-
ference on Cluster Computing (CLUSTER). IEEE, 2022, pp. 161–171.

[40] M. Wilkins, Y. Guo, R. Thakur, N. Hardavellas, P. Dinda, and M. Si, “A
FACT-based approach: Making machine learning collective autotuning
feasible on exascale systems,” in 2021 Workshop on Exascale MPI
(ExaMPI). IEEE, 2021, pp. 36–45.

12

https://www.sciencedirect.com/science/article/pii/S0167819117301199
https://www.sciencedirect.com/science/article/pii/S0167819117301199

	Introduction
	Background
	MPI Collective Operations
	Collective Performance on Exascale Hardware
	Network Topology
	Multi-Port Nodes & Message Buffering
	Intranode Links


	Binomial Tree and K-nomial Tree Algorithms
	The Binomial Tree Algorithm
	Binomial Tree Algorithm Cost
	The K-nomial Tree Algorithm
	K-nomial Tree Algorithm Cost

	Recursive Doubling and Recursive Multiplying Algorithms
	The Recursive Doubling Algorithm
	Recursive Doubling Algorithm Cost
	The Recursive Multiplying Algorithm
	Recursive Multiplying Algorithm Cost

	Ring and K-Ring Algorithms
	The Ring Algorithm
	Ring Algorithm Cost
	The K-Ring Algorithm
	K-Ring Algorithm Cost

	Evaluation
	MPI Library Integration
	Experimental Methodology
	Frontier Results
	Generalized vs. Non-Generalized
	Sensitivity to Parameter Value
	Speedup

	Large-Scale Frontier Results
	Polaris Comparison
	Evaluation Summary
	Selection Configuration
	Considerations

	Related Work
	Conclusion
	Acknowledgments
	References

