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Abstract—The emergence of quantum computers as a new
computational paradigm has been accompanied by specula-
tion concerning the scope and timeline of their anticipated
revolutionary changes. While quantum computing is still in
its infancy, the variety of different architectures used to
implement quantum computations make it difficult to reliably
measure and compare performance. This problem motivates
our introduction of SupermarQ, a scalable, hardware-agnostic
quantum benchmark suite which uses application-level metrics
to measure performance. SupermarQ is the first attempt to
systematically apply techniques from classical benchmarking
methodology to the quantum domain. We define a set of
feature vectors to quantify coverage, select applications from a
variety of domains to ensure the suite is representative of real
workloads, and collect benchmark results from the IBM, IonQ,
and AQT@LBNL platforms. Looking forward, we envision
that quantum benchmarking will encompass a large cross-
community effort built on open source, constantly evolving
benchmark suites. We introduce SupermarQ as an important
step in this direction.

Keywords-Quantum Computing; Benchmarking; Program
Characterization

I. INTRODUCTION

The creation, validation, and implementation of bench-

marks is a foundational aspect of computer architecture. The

pursuit of increasingly powerful computers has resulted in

a zoo of computational architectures which requires the use

of application benchmarks to enable sensible, cross-platform

performance measurements.

The emergence of new computational paradigms moti-

vates the development and deployment of new benchmark

suites to measure and define performance. The upsurge of

computing in the 1970s and 80s led to the creation of

LINPACK and SPEC for benchmarking supercomputers and

workstations [1], [2]. The PARSEC benchmark suite was

introduced in response to the proliferation of chip multi-

processors [3], and the explosion of interest in machine

learning applications led to the creation of MLPerf to

benchmark performance between different models [4]. Simi-

larly, the emergence of new quantum computer architectures

must be matched by the development of a new suite of

benchmarks tailored to these systems.

Prior attempts to benchmark quantum processors have

focused on single-number metrics to quantify performance.

For example, the quantum volume [5] and Q-score [6]

metrics target a specific class of circuits or a single appli-

cation, respectively, to determine the overall performance

of a quantum processing unit (QPU). However, capturing

the general performance of a computational system within

a single number can be very challenging as well as mis-

leading. Throughout the history of classical benchmarking

there have been examples of compilers and microarchitec-

tures optimized for specific benchmarks while neglecting

the application domains that fall outside the scope of the

benchmark suite [7]. Therefore, it is advantageous to use an

entire suite of benchmarks to obtain a better sense of system

performance across a range of potential applications.

Application-level benchmarks provide more accurate mea-

surements of system-level performance than circuit- and

gate-level strategies which are better suited to characterizing

specific properties of the hardware. Applications also differ

in the amount and kind of resources they require. Therefore,

a benchmark suite must maintain good coverage of the

application space to accurately represent realistic workloads.

We introduce a set of feature vectors to describe and measure

the coverage of quantum applications. Each benchmark

application is described by a single vector, and the individual

features that make up this vector are based on hardware-

agnostic quantities that are related to the application’s re-

source requirements.

Existing quantum processors are described as Noisy

Intermediate-Scale Quantum (NISQ) devices due to their

prohibitive gate error rates and limited number of qubits [8].

NISQ computers lack the computational resources to run

the originally-envisioned quantum applications such as fac-

toring [9], database search [10], and solving linear sys-

tems [11]; which require devices that are fault-tolerant (FT).

A quantum benchmark suite must take into account the gap

between the machines of today and those of tomorrow by

incorporating applications that scale down to the NISQ and

up to the FT regime in order to remain relevant.

The state-of-the-art in quantum computing is rapidly pro-

gressing. As qubit counts increase and gate errors decrease,

new use cases may be discovered. The set of benchmark

applications should change to reflect those developments.

In addition, quantum software techniques are continuously

improving and adapting to changes in hardware. This aspect

of quantum computing should be reflected in the benchmark
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suite by evaluating the performance of the system, composed

of the hardware and the software, as a whole. Some compiler

optimizations, such as noise-aware qubit placement [12]–

[15], have already become standard practice within some

quantum compilation toolflows and can make the difference

between program success and failure.
Recent works within the quantum computer architecture

community have taken the first steps towards quantum

benchmarking. The PPL+2020 [16] suite was evaluated on

seven superconducting QPUs, focused on characterizing the

error rates of different operations, and demonstrated the

time dependence of their performance. The TriQ [17] suite

was used to perform a cross-platform comparison between

superconducting and trapped-ion systems and revealed the

importance of software visibility into the hardware’s native

gates. However, the scalability of these suites is limited by

their reliance on circuit simulation to estimate how well the

QPUs are performing. SupermarQ extends these works by

introducing a systematic and principled approach to building

a scalable quantum benchmark suite. We introduce a set

of principles: (1) scalability, (2) meaningful and diverse

applications, (3) full-system evaluation, and (4) adaptivity, to

address the constraints presented above and provide a basis

for developing a robust suite of benchmarks.
Resources such as coherence time, the number of qubits,

and number of two-qubit gates required by a quantum pro-

gram significantly impact that program’s success rate [16],

[17]. We introduce multiple features including the connec-

tivity of the logical circuit, the degree of parallelism, and

the proportion of two-qubit entangling operations within

the circuit to reflect an application’s resource requirements.

We use these features to examine the coverage of existing

quantum benchmark suites, and given a quantum device and

benchmark application, we study the correlation between the

application’s features and the performance of the QPU.
We seek to define the challenges that surround the con-

struction of a scalable quantum benchmark suite and meet

these challenges by drawing on techniques from classical

benchmarking. To this end, our contributions include:

• A set of guiding principles that define the desirable

qualities of a scalable quantum benchmark suite.

• A set of feature vectors to characterize the applications

and coverage of quantum benchmark suites.

• The discovery that realistic benchmark suites give better

coverage than existing single-application benchmarks

and synthetic suites that focus on individual features.

• Eight benchmark applications; specified at the level

of OpenQASM [18] that consist of an open-source

circuit generator and performance metric that are both

scalable.

• Cross-platform evaluation on superconducting and

trapped ion architectures.

• Correlation of the application features with the ob-

served system performance.

The remainder of the paper is organized as follows: we

begin with an overview of prior quantum benchmarks in

Sec. II. In Sec. III we describe the design choices behind

the benchmark principles and feature vectors. The bench-

mark applications and the coverage of different benchmark

suites are discussed in Sec. IV. We then step through our

methodology in Sec. V and evaluate our results in Sec. VI.

Finally, we provide a discussion of these results in Sec VII

and close with final remarks and future work in Sec. VIII.

II. PRIOR WORK

A. Classical Benchmarks

As processing power grew exponentially with Moore’s

Law it was necessary for the development of classical bench-

mark suites to keep pace so that the performance of newly

emerging architectures could be accurately measured. Ad-

vancements in areas such as high-performance computing,

workstations, chip multi-processors, and machine learning

were accompanied by new suites of benchmarks designed

to quantify performance within each respective domain [1]–

[4].

In particular, the PARSEC benchmark suite was designed

around a set of principles that helped define its scope and

purpose. The five requirements that PARSEC aimed to meet

were: the inclusion of multithreaded applications, repre-

senting emerging workloads, targeting diverse workloads,

utilizing state-of-art techniques, and supporting on-going

research efforts [3]. SupermarQ is inspired by the principled

approach taken by PARSEC because of the similarities

between the emergence of chip multi-processors and the

emergence of quantum computers.

B. Quantum Benchmarks

The current state of quantum benchmarks consist of (a)

low-level approaches to measuring individual gate errors,

qubit coherence times, or other hardware-level properties, (b)

synthetic benchmarks that utilize random circuits to measure

hardware performance, (c) single application benchmarks

that focus on a particular use-case, and (d) a few exam-

ples of initial quantum benchmark suites. Each of these

approaches have advanced the state-of-the-art in quantum

benchmarking. In the following sections we discuss the

tradeoffs associated with each approach.

1) Gate-Level Characterization: The original motivation

behind the development of quantum benchmarks was the

desire to understand exactly what process the quantum

hardware was implementing in the presence of imperfect

controls and noise. Quantum process tomography is a well-

known technique which can be used to fully characterize any

quantum process [19]. Unfortunately, this technique scales

exponentially with the number of qubits and is therefore only

applicable to systems of only a few qubits. In response to the

intractability of quantum process tomography, randomized
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approaches to quantum benchmarking were introduced [20]–

[22]. These methods scale polynomially with the number of

qubits and can be used to characterize the average error

rates for the different operations within a QPU’s native

gate set. While understanding the error rates of individual

gate operations is a critical component of designing a QC

system, especially for constructing noise models, it does not

directly capture how the system will perform on real-world

applications.

2) Synthetic Benchmarks: Synthetic benchmarks such as

the quantum volume protocol [5] and quantum LINPACK

benchmark [23] have also been introduced to measure the

performance of QC systems. Both benchmarks rely on some

aspect of randomness within their protocol. The quantum

volume metric is computed by finding the largest random

circuit of equal width and depth that a QPU is able to execute

while generating the correct outputs with probability greater

than 2/3 (i.e., heavy-output generation) [5]. The quantum

LINPACK benchmark is inspired by the classical LINPACK

benchmark which measures performance by a computer’s

ability to solve random systems of linear equations.

The main drawbacks to these synthetic benchmarks is that

they are neither meaningful nor scalable. Typical quantum

applications do not generally take the form of random

quantum circuits and therefore the quantum volume and

LINPACK benchmarks are not necessarily representative of

useful workloads [8]. In addition, the computation required

to verify the output of these benchmarks becomes intractable

as the number of qubits increases. The quantum volume

metric requires that the heavy-outputs of the random circuit

be computed beforehand, using a classical technique which

scales exponentially with the number of qubits [5]. Veri-

fication of the quantum LINPACK benchmark also scales

unfavorably. In fact, the hardness of this benchmark is based

on the same type of chaotic quantum evolution that underlies

prior supremacy experiments [23], [24]. Although quantum

LINPACK may be a suitable candidate for testing quantum

supremacy, this characteristic is not desirable as a scalable

quantum benchmark.

3) Application Benchmarks: The Variational Quantum

Eigensolver (VQE) [25] is a hybrid quantum-classical al-

gorithm used to compute molecular ground state energies

and has been proposed as a potential quantum bench-

mark [26]. The effective fermionic length is another bench-

mark which uses VQE to compute the ground state energies

of one-dimensional Fermi Hubbard models of increasing

length [27].

The Quantum Approximate Optimization Algorithm

(QAOA) [28] has also been proposed as an effective ap-

plication benchmark. The performance of QAOA on su-

perconducting QPUs was compared against the D-Wave

2000Q quantum annealer for instances of weighted MaxCut

and 2-SAT problems [29]. Another example, the “Q-score”

performance metric, is computed by finding the largest

MaxCut instance which a QPU can effectively solve [6].

All of these application based benchmarks possess a

level of scalability that is not present in the low-level and

synthetic benchmarks. This is due to their use of application-

level metrics, like ground state energy or approximation

ratio to measure performance. Simultaneously, reliance on

application-level metrics makes cross-platform comparisons

between different quantum architectures and classical ap-

proaches straightforward. This is important because the

crossover point between the best classical and quantum

approaches is a constantly moving target that shifts with

every advance in algorithms, software, and hardware.

Despite the scalability offered by these application bench-

marks, a single application is inadequate for measuring

overall system performance. Many different applications are

required to reflect the diversity of possible workloads.

4) Benchmark Suites: Some prior works have begun to

explore the creation of quantum benchmark suites to enable

more accurate characterizations of system performance and

cross-platform comparisons. QASMBench [30] is a low-

level benchmark suite based on the OpenQASM assembly

language [18]. PPL+2020 evaluated nine benchmarks on

seven different IBM superconducting QPUs, characterizing

their error rates and performance over time [16]. While

both are examples of early quantum benchmark suites, their

performance metrics are based on comparisons between

the experimental and ideal circuit outputs. This limits the

scalability of these suites due to the exponential scaling of

quantum circuit simulation.

The current QC landscape is filled with a variety of archi-

tectures such as photonic, trapped ion, and superconducting

implementations. Initial architectural comparisons between

these implementations have revealed the impact that qubit

connectivity, native gate operations, and error rates can have

on program execution [17], [31]. Thus far, however, these

cross-platform comparisons have been limited to a handful

of applications that do not always represent the workloads

we expect to run on QPUs in the near future.

III. BENCHMARK DESIGN

The SupermarQ quantum benchmark suite is built around

four guiding principles that shape the selection and evalua-

tion of the applications. We start by motivating the design

principles and then define the hardware-agnostic features

used to characterize the quantum programs.

A. Design Principles

(1) Scalability – The current trajectory of QC development

begins with the small-scale NISQ devices being built today

and is aimed at the large-scale FT quantum computers of

tomorrow. Because of this large variation in system size

the applications included in a quantum benchmark suite

should be gracefully scalable from just a few qubits to

hundreds, thousands, and beyond – while maintaining their
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meaning. For example, combinatorial optimization problems

like MaxCut are scalable in this context because they can

be defined on graphs of arbitrary size. It is also important

that the performance metrics scale efficiently. Classical

simulations of quantum circuits scale exponentially with the

number of qubits so simply simulating the benchmarks and

comparing with the experimental results is not a scalable

solution. Therefore, a scalable suite must be composed of

applications whose size is parameterizable and performance

is easily verifiable.

(2) Meaningful and Diverse – Benchmark applications

should reflect the workloads that will appear in practice.

Potential use-cases for QPUs have been identified in chem-

istry [25], [32], machine learning [11], [33], cryptogra-

phy [9], [34], finance [35], [36], physics [37], [38], and

database search [10]. Incorporating applications from a

range of domains will provide relevant performance points to

the widest range of people. Quantum programs pulled from

different use-cases present wildly varying program structures

and require different amounts of resources from the quantum

computer. A benchmark suite should provide good coverage

over these potential use-cases to better understand system

performance under a variety of circumstances. The feature

vectors introduced in Sec. III-B are a step in quantifying the

stress an application places on a QPU.

(3) Full-system evaluation – The overall performance

of a quantum computer relies on the proper functioning

and interplay between the hardware and software stacks.

Within the current stage of QC, the role played by the

compiler: effectively cancelling gates, mapping between

program and physical qubits, and so on, can make or break

the execution of a quantum program [14], [39]. In addition,

many of the unique properties offered by different quantum

implementations (native multi-qubit or parameterizable gates

for example) are exploited at the compiler level when the

program is transpiled to a hardware supported gateset.

Mandating a single compilation toolflow is inefficient, re-

quiring that each benchmark be represented as an executable

for every hardware backend, and ineffective, since certain

capabilities available only to a certain class of quantum

hardware may be overlooked. An application-based quantum

benchmark suite should therefore specify benchmarks at a

shared level of abstraction, such as OpenQASM, and allow

the compiler to play a role in overall system performance.

(4) Adaptivity – The entirety of quantum computing,

encompassing both the hardware and software, is undergoing

a period of rapid advancement. This poses a challenge for

benchmarking since any suite which aims to accurately

measure performance must keep pace with the development

of algorithms, compilation optimizations, and hardware. The

applications making up the benchmark suite should reflect

this by adapting to the current state-of-the-art.

B. Feature Vectors

We use a set of feature vectors to quantify the coverage of

the selected benchmark applications. The features indicate

how each of the benchmarks will stress the processor and

to what degree.

1) Program Communication: Quantum algorithms vary

in the amount of communication needed between qubits.

Some algorithms only require single qubit operations and

nearest-neighbor interactions. These algorithms are easily

mapped to processors with limited connectivity between

qubits. Other algorithms require communication between

every pair of qubits. Within a quantum circuit, a qubit’s

“degree” is the number of other qubits it interacts with via

multi-qubit operations. Node degree is commonly used for

physical architecture analysis in classical [40] and quantum

networking [41]. It is often the case that physical qubit

degree is much more uniform and limited than what is

required for logical algorithm qubits. For hardware with

less than all-to-all connectivity, the compiler may need to

insert swap operations into the program to successfully map

between the algorithmic and physical qubits [42]. We use

the normalized average degree of the program’s interac-

tion graph to quantify the communication requirements of

quantum circuits. The interaction graph is formed by taking

the qubits to be the vertices and inserting an edge between

every pair qubits that interact with one another. The program

communication feature is computed by taking the average

degree of the interaction graph divided by the average degree

of a complete graph with an equivalent number of qubits.

The program communication feature is computed as

C =

∑N
i d(qi)

N(N − 1)
(1)

for an N -qubit circuit, where d(qi) is the degree of qubit qi.
The communication requirements of sparsely connected ap-

plications will have values near zero while denser programs

will be close to one.

2) Critical-Depth: The lifetime of the information stored

across a QPU’s qubits, the coherence time, is limited. This

limitation combined with accumulated gate error causes

lower fidelity circuit executions. Thus, it is essential that

quantum circuits are of the shortest duration possible. The

minimum duration for a quantum circuit is determined

by the critical path: the longest span of dependent oper-

ations from circuit input to output. The critical path is a

valuable benchmarking metric because quantum hardware

performance must reach specific thresholds to accommodate

continuously compounding gate errors. Operations of par-

ticular interest are two-qubit interactions because two-qubit

operations dominate single-qubit operations in terms of gate

error and execution time on NISQ hardware [43] [44]. The

critical-depth feature gives context about how many two-

qubit interactions in a program lie along the critical path
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and contribute to the overall circuit depth. It is calculated as

D = ned/ne (2)

where ned is the number of two-qubit interactions on the

longest path that sets the circuit depth and ne is the total

number of two-qubit interactions in the circuit. Circuits that

are heavily serialized will have a critical-depth that’s close

to 1.

3) Entanglement-Ratio: Entanglement is a critical prop-

erty which gives quantum computing much of its strength.

It makes for a useful benchmark for quantum machine

performance as it can be applied to computing tasks that

demonstrate quantum advantage such as in Shor’s factor-

ing [9], teleportation [45], superdense coding [46], and quan-

tum cryptographic protocols [47]. Prior work indicates that

algorithms without entanglement can be efficiently simulated

by classical computers [48], [49]; further demonstrating the

importance of entanglement as a benchmark for quantum

processing power. While it is in general quite difficult to

measure the precise amount of entanglement at every point

within a circuit (usually requiring access to the full statevec-

tor) we can roughly capture this feature by computing the

proportion of all gate operations (ng) which are two-qubit

interactions (ne):

E = ne/ng. (3)

4) Parallelism: The structure of different quantum algo-

rithms allow for varying degrees of parallelization. Parallel

operations can also stress the quantum hardware because

of correlated noise events known as “cross-talk” that de-

grade program performance [50]. Cross-talk, often caused

by simultaneous gate execution, is a common source of

error in NISQ systems, and its negative impact on program

execution has been well studied [51], [52]. This motivates

the development of a feature that captures how susceptible a

benchmark is to degradation via cross-talk. The parallelism

feature represents this aspect by comparing the ratios of the

number of qubits (n), gates (ng), and the circuit depth, d:

P =
(ng

d
− 1

) 1

n− 1
. (4)

Highly parallel applications fit a large number of operations

into a relatively small circuit depth and will therefore have

a parallelism feature close to 1.

5) Liveness: During program execution, a qubit will

either be involved in computation or it will be idle; waiting

for its next instruction. In an ideal environment, the qubit’s

state would stay coherent while idling. In reality, unwanted

environmental interactions such as amplitude damping, de-

phasing, and correlated noise cause decoherence [53]. The

liveness feature captures aspects of an application’s qubit

status during its lifetime. It can be defined as

L =

∑
ij Aij

nd
, (5)

where A is the liveness matrix defined by taking a quantum

circuit and forming a matrix with n rows equal to the number

of qubits and a number of columns equal to the circuit

depth d. At every time-step of circuit execution (i.e., each

column), a qubit may either be involved in an operation or

idle, corresponding to entries of 1 or 0 in the liveness matrix,

respectively. In this way, the liveness feature gives a sense

of how often the qubits are being acted upon. The frequency

of idling as 1 − L provides insight to qubit inactivity over

its application lifetime.

6) Measurement: Qubit-specific measurement is a critical

part of quantum computing [54]. It is required to extract

information during and after a program’s execution. In

fault-tolerant quantum computing, error correcting codes

use measurement to extract entropy from a noisy quantum

system [55]. Unfortunately, NISQ devices suffer from non-

trivial amounts of measurement error. The measurement

feature,

M = lmcm/d (6)

focuses specifically on the mid-circuit measurement and

reset operations within a quantum program. For a circuit

composed of d sequential layers of gate operations (i.e., the

circuit depth), lmcm is the number of layers which contain

these measurement and reset operations.

IV. BENCHMARK APPLICATIONS

A. GHZ

The generation of entanglement between qubits is one of

the most important tasks in quantum computing, sensing,

and networking. We benchmark the ability of a quantum

processor to generate entanglement by measuring the state

preparation fidelity of GHZ states [56]. The GHZ benchmark

consists of a Hadamard gate followed by a ladder of CNOTs

to produce the entangled state: (|00 . . . 0〉 + |11 . . . 1〉)/√2
(see Fig. 1a). The performance metric is the Hellinger

fidelity [57], [58] between the experimentally observed prob-

ability distribution and the ideal distribution ( 50% |00 . . . 0〉
and 50% |11 . . . 1〉).

There are other methods for preparing GHZ states, notably

those utilizing mid-circuit measurements or parallel two-

qubit gates. These methods can have different resource

requirements in terms of gate counts and circuit depth [59],

[60]. However, we choose to include the CNOT-ladder

method because not all platforms currently support mid-

circuit measurements.

B. Mermin-Bell

One of the primary uses for quantum computers thus far

has been for small scale demonstrations of the quantum-

ness of nature [61], [62]. These experiments are known

as Bell inequality tests [63] whose introduction resolved

the Einstein-Podolsky-Rosen (EPR) paradox that questioned
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Ry(θ0) Rz(θ4) • Ry(θ8) Rz(θ12)
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Ry(θ3) Rz(θ7) Ry(θ11) Rz(θ15)

H Rz(θ1) H • •
H Rz(θ1) H Rz(θ2) • •
H Rz(θ1) H Rz(θ2)

(f) Vanilla QAOA

H • • • • Rx(θ2)

H Rz(θ1) • • Rx(θ2)

H Rz(θ1) Rz(θ1) Rx(θ2)

Figure 1: Feature maps and sample circuits for each of the benchmarks evaluated in this study. The definitions of the Program

Communication (PC), Critical Depth (CD), Entanglement-Ratio (Ent), Measurement (Mea), Parallelism (Par), and Liveness

(Liv) features are given in Sec. III.

the completeness of quantum mechanics [64]. The Mermin-

Bell benchmark (Fig. 1b) included in SupermarQ is an

example of a Bell inequality test. In this benchmark, a

GHZ state, |φ〉 = (1/
√
2)(|00 . . . 0〉 + i |11 . . . 1〉), is first

prepared before measuring the expectation value of the

Mermin operator

M =
1

2i

⎛
⎝

n∏
j=1

(σj
x + iσj

y)−
n∏

j=1

(σj
x − iσj

y)

⎞
⎠ (7)

where σj
x and σj

y are the Pauli-X and -Y operators acting

on the j-th qubit. If nature is quantum, the expectation of

this operator for an n qubit system is

〈φ|M |φ〉 = 2n−1. (8)

If nature is classical and obeys a theory of local-hidden

variables, then the expectation value of the Mermin operator

is bounded by

〈φ|M |φ〉 ≤ 2(n−(n mod 2))/2 (9)

We measure performance by computing ( 〈φ|M |φ〉 +
2n−1)/2n as the benchmark score.

After preparing the GHZ state, the remaining gates within

the Mermin-Bell circuits rotate the quantum state into the

shared basis of the Mermin operator such that the expecta-

tion of each term can be measured simultaneously. Unlike

the GHZ benchmark, the basis-change portion of the circuit

begins to dominate the state preparation as the size of the

benchmark increases.

C. Error Correction Subroutines

Error correcting codes (ECCs) are the means by which

fault-tolerant quantum computers are able to execute arbi-

trarily long programs. Many ECCs have been developed

that trade off between the number of detectable errors,
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correctable errors, qubits required, and required error thresh-

olds to reach fault-tolerance [65]–[67]. Although full-scale

fault-tolerance has not yet been observed, small experiments

have demonstrated the feasibility of different error correction

schemes on both superconducting and trapped ion architec-

tures [68]–[70].

Since the error levels of current NISQ devices do not

allow for the implementation of full-scale error correction,

we use two proxy-applications to benchmark QPU perfor-

mance within this domain. While these proxy-applications

do not correct any errors, they do reflect the circuit structure

that is common to many ECCs [55], [71]. Unlike the other

benchmarks within the SupermarQ suite, the error correction

proxy-applications make use of RESET operations (needed

to reinitialize a qubit to the |0〉 state after measurement).

The data qubits which do not participate in the RESET will

need to idle. This idleness will add to the circuit execution

time; increasing the chances of decoherence.

1) Phase Code Proxy-application: The phase code

benchmark is a phase flip repetition code parameterized by

the number of data qubits and rounds of error correction.

The feature maps for different parameterizations are shown

in Fig. 1c as well as a sample circuit which has three

data qubits and a single round of error correction. To

measure performance, we first prepare the data qubits in

initial |+〉 = (|0〉 + |1〉)/√2 or |−〉 = (|0〉 − |1〉)/√2
states followed by r rounds of error correction and finally a

measurement of the final state. In a noiseless setting, the final

state of the system is known a priori: it should be identical to

the chosen initial state. We therefore compute the Hellinger

fidelity between the experimental and ideal distributions as

a measure of performance. For example, the data qubits in

Fig. 1c’s sample circuit are initialized in the |+−+〉 state

and the ideal output distribution is an equal distribution over

all the possible values of the three data qubits and the error-

syndrome qubits in the |00〉 state.

2) Bit Code Proxy-application: Like the phase code, the

bit code benchmark is also a bit flip repetition code that

is parameterized by the number of data qubits and error

correction rounds. Instead of checking for phase flips, the

bit code detects bit flips on the data qubits. Fig. 1d shows

the feature map for this benchmark and a sample circuit

with three data qubits initialized in the |010〉 state and a

single round of error correction. Since the ideal final state

is known a priori, we also use the Hellinger fidelity as the

score function for this benchmark.

D. QAOA

The Quantum Approximate Optimization Algorithm

(QAOA) is a variational quantum-classical algorithm that

can be trained to output bitstrings to solve combinatorial op-

timization problems [28]. We benchmark QAOA for MaxCut

on complete graphs with edge weights randomly drawn from

{−1,+1}. This is known as the Sherrington-Kirkpatrick

(SK) model; and it is a particularly promising target for

near-term quantum computers [72], [73]. We implement two

variants of QAOA that use different parameterized circuits

(ansatzes).

The Vanilla QAOA benchmark, Fig. 1f, uses an ansatz

that matches the SK model exactly. This is the typical

formulation of QAOA [28]. Since the SK model is com-

pletely connected, the constructed ansatz also requires all-

to-all connectivity. The Fermionic-Swap QAOA benchmark

implements a variational ansatz known as a fermionic-swap

network [74], [75]. This ansatz is a natural choice for solving

MaxCut on the SK model which requires an interaction

between every pair of qubits (i.e., n(n − 1)/2 edges).

The fermionic-swap network (a sample circuit is shown in

Fig. 1e) is able to perform all O(n2) required interactions

using a quantum circuit whose depth scales as O(n).
We use a proxy-application in place of the full variational

algorithm due to current limitations associated with cloud-

based access to QC systems. The full QAOA benchmark

would require thousands of iterations to reach convergence.

Evaluating the full benchmark becomes infeasible because

of the wait times incurred while the jobs are in the queue.

We measure a QPU’s ability to evaluate a single iteration of

QAOA instead.

To ensure scalable classical verification, we choose the

level-one (p = 1) variant of QAOA; which is efficiently sim-

ulable classically due to recent work [76]. We found optimal

parameters via classical simulation and then executed these

QAOA circuits on the real QC systems. We compared the

experimental and ideal results by measuring the expectation

value, 〈H〉, and computing 1 −
∣∣∣ 〈H〉ideal−〈H〉exper

2〈H〉ideal

∣∣∣ as the

benchmark score. For the SK model, this can be written

as H =
∑

i,j∈E σi
zσ

j
z; where E is the set of edges within

the graph. In contrast, the performance measure for the

full QAOA benchmark would be the final MaxCut value

achieved after optimization. This would allow for straightfor-

ward comparisons with other quantum or classical MaxCut

algorithms.

E. VQE

The Variational Quantum Eigensolver (VQE) [25] is

another hybrid algorithm like QAOA. The goal of this

algorithm is to find the lowest eigenvalue of a given problem

matrix by computing a difficult cost function on the QPU

and feeding this value into an optimization routine running

on a CPU. Typically, the problem matrix is the Hamilto-

nian governing a target system and the lowest eigenvalue

corresponds to the system’s ground state energy [77].

We target the one dimensional transverse field Ising model

(TFIM, also called the transverse Ising chain) and use VQE

to find its ground state energy. The 1D TFIM is a useful

model for understanding phase transitions in magnetic mate-

rials [38]. The 1D TFIM is desirable as a scalable benchmark

because it is exactly solvable via classical methods [78].
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Like the proxy-application employed for the QAOA

benchmark, we replace the full VQE benchmark with a

proxy-application that measures performance for a single

iteration of the VQE algorithm. Instead of running the

full VQE algorithm and reporting the final ground state

energy, we classically simulate the variational optimization

to convergence. We take the final parameters output by said

classical optimization and measure the energy of the 1D

TFIM using the quantum computer. We compare this energy

with the value obtained classically and compute the same

score function as the QAOA benchmark. The hardware-

efficient ansatz used in this benchmark is shown in Fig. 1g

along with its corresponding feature map.

F. Hamiltonian Simulation

Simulating the time evolution of quantum systems is one

of the most promising applications of quantum comput-

ing [79]. There are many quantum algorithms for Hamil-

tonian simulation which are known to possess exponential

speedups over classical methods [37], [80]. Closing the

gap between the algorithmic resource requirements and the

capabilities of QC systems may lead to breakthroughs in the

development of new batteries and catalysts [81].

We target the 1D TFIM as the system we wish to simulate.

The Hamiltonian for this system, consisting of N spins, may

be written as

H = −
N∑
i=1

(Jzσ
i
zσ

i+1
z + εph cos (ωpht)σ

i
x) (10)

where Jz is a coupling constant that determines the strength

of the nearest-neighbor interactions and εph cosωpht de-

scribes the time-varying magnetic field. We set these pa-

rameters to match recent work on quantum algorithms for

simulating the time evolution of quantum systems [82].

The Hamiltonian simulation benchmark (Fig. 1h) is spec-

ified by taking the Hamiltonian in Eq. 10 for a specific

value of N , generating a quantum circuit via Trotteriza-

tion [83] for a specific number of time steps, and finally

measuring the average magnetization of the final state. The

average magnetization of the final quantum state can be

found by computing the expectation value of the operator

mz = 1
N

∑
i σ

i
z [82]. The experimentally obtained average

magnetization is then compared to the exact value obtained

classically. We compute 1 − |〈mz〉ideal−〈mz〉exper|
2 as the

benchmark score.

G. Coverage

To analyze suite coverage we consider the volume of

feature space spanned by the benchmarks. We treat the six

application features as separate axes within a six dimensional

space. Each benchmark within a suite can be associated with

a single, six dimensional feature vector. To find the coverage

of a given set of applications, we compute the volume of

the convex hull defined by their feature vectors: each shape

Suite Volume Circuits
SupermarQ (this work) 9.0e-03 52

QASMBench [30] 4.0e-03 62
Synthetic 1.4e-03 6

CBG2021 [84] 1.6e-08 10476
TriQ [17] 4.1e-14 12

PPL+2020 [16] 1.0e-15 9

Table I: Coverage comparison of different benchmark suites.

For each suite we report the volume and the number of

circuits used to compute the volume.

in the feature maps (Fig. 1) shown above corresponds to a

single vector within the higher dimensional feature space.

We compute the coverage of six different quantum bench-

mark suites and report their volumes and the number of

circuits used to compute the coverage in Table I. QASM-

Bench is a collection of benchmark circuits that range in

size from two to a thousand qubits [30]. CBG2021 is a

recent suite that includes six different benchmark appli-

cations that range from Mermin-Bell tests to calculations

of the Mandelbrot set [84]. The TriQ suite was used in

recent cross-platform comparisons between superconducting

and trapped ion processors, and consists of small-scale

applications with no more than eight qubits [17]. PPL+2020

introduced the “quality of operation” metric to capture the

fidelity and variance of quantum gate operations, and is

composed of nine small benchmark applications with three

to five qubits [16]. For the SupermarQ suite, we generated

instances of the applications covered in Sec. IV ranging in

size from three to a thousand qubits. Finally, the synthetic

suite consists of a set of hypothetical proxy-benchmarks that

each maximize a single application feature (e.g., unit vectors

along each axis of the six dimensional space).

Only SupermarQ and QASMBench attain coverage su-

perior to the synthetic benchmark suite. These are also the

only suites that include larger applications relevant to late

NISQ and early FT devices. For comparison, the Super-

marQ applications used in this coverage computation were

selected to match the range of benchmark sizes found in the

QASMBench suite, however, SupermarQ has the additional

capability of generating arbitrarily sized benchmarks.

Periodically collecting new benchmark data is a practical

concern for any quantum benchmark suite. We utilize a

write-once-target-all toolflow, SuperstaQ, which was de-

signed explicitly with this purpose in mind [87]. With

SuperstaQ we are able to specify the OpenQASM for a

single circuit and execute it on multiple backends. The need

to efficiently collect new benchmark results also introduces

a tradeoff between the number of circuits in the suite (more

circuits covering more applications and boosting coverage)

and the ability to evaluate them in a cost-efficient man-

ner. SupermarQ tries to find a balance between the two;

providing competitive coverage that is superior to a purely

synthetic suite while using a relatively modest number of
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Machine Qubits Coherence Time (μs)
(T1, T2)

Gate Times (μs)
(1Q, 2Q, Meas)

Gate Errors (%)
(1Q, 2Q, Meas) Topology

IBM-Casablanca 7 91.21, 125.23 0.035, 0.443, 5.9 0.028, 0.83, 2.09

IBM-Montreal 27 104.14, 86.88 0.035, 0.423, 5.2 0.052, 1.76, 1.96

IBM-Guadalupe 16 99.52, 104.99 0.035, 0.416, 5.4 0.043, 1.03, 2.79

IonQ 11 >1e7, 2e5 10, 210, 100 0.28, 3.04, 0.39

AQT 4 62, 37 0.03, 0.152, 1.02 0.083, 2.1, 1.25

Table II: Characteristics of the QC systems used to evaluate the benchmarks. The IBM and IonQ data was taken from the

public documentation available through their respective cloud providers (IBM Qiskit and AWS Braket) on July 30, 2021.

The device statistics for the IBM QPUs not pictured here are available online through IBM Quantum [85]. The AQT system

properties were obtained via randomized benchmarking on Sept 21, 2021 and [86].

circuits.

V. METHODOLOGY

In this work we present results obtained for eight bench-

mark applications evaluated on nine QPUs. We accessed

the quantum computers through the IBM Qiskit [85] and

AWS Braket [88] cloud services, and the Lawrence Berkeley

National Lab’s Advanced Quantum Testbed (AQT) [86]. The

specifics of each benchmark’s evaluation and score function

are given in Sec. IV, and the architectural characteristics

of the quantum computers used to evaluate the suite of

benchmarks are summarized in Table II.

For each benchmark we first fix the application-specific

parameters (e.g., problem size, number of layers, initial

state). Then the OpenQASM for the benchmark circuits is

generated. Some benchmarks may be composed of multiple

circuits. For example, the VQE benchmark requires two

separate circuits in order to measure the energy operator

in two orthogonal bases.

To easily evaluate the benchmarks across QPUs we uti-

lize SuperstaQ [87]: a write-once-target-all toolflow which

presents a unified interface for simultaneously submitting

OpenQASM-defined quantum circuit instances to the de-

vices available on the IBM Qiskit and AWS Braket cloud

services. Behind the scenes, SuperstaQ converts OpenQASM

to AWS Braket’s jaqcd (JsonAwsQuantumCircuitDescrip-

tion) intermediate representation [89]. In addition to thor-

ough unit tests and unitary-verification integration tests,

we experimentally validated the correctness of SuperstaQ

by running our error correction benchmarks for a com-

prehensive set of input-output bitstring pairs. IBM’s Qiskit

supports OpenQASM out-of-the-box, so it does not require

any conversion.

Part of the challenge associated with evaluating the bench-

marks in this suite stems from the fact that the level of

control over which compiler optimizations are applied to the

circuits varies across the different cloud services. SupermarQ

enables cross-platform comparisons of performance by spec-

ifying its benchmarks at a shared level of abstraction. To do

this, we evaluate all the applications within the context of

a Closed Division, that specifies how the benchmarks are

expressed and the optimizations that are allowed.

The Closed Division allows for a restricted set of op-

timizations to obtain a lower bound for the performance

of a quantum computer. The benchmarks in this suite are

specified at the level of OpenQASM [18], the most pop-

ular [90] intermediate representation for quantum circuits.

Optimizations which are publicly available to quantum pro-

grammers are considered fair-game. These include the tran-

spilation of OpenQASM to native gates, noise-aware qubit

mapping, SWAP insertions, reordering of commuting gates,

and cancellation of adjacent gates. Low-level optimizations

below the level of native gates, such as pulse optimizations,

as well as post-processing techniques like error-mitigation

are not allowed. The optimizations included within the

Closed Division were chosen to match the optimizations

that are automatically applied when using the cloud-based

platforms. This matches the level of optimization that would

be available to the average user.

The specification of the Closed Division and the bench-

mark results presented in this work aim to demonstrate a

lower bound on the performance which would be achievable

by a typical quantum programmer. We leave the specification
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(a) GHZ (b) Mermin-Bell

(c) Bit Code (d) Phase Code

(e) VQE (f) Hamiltonian Simulation

(g) Fermionic-Swap QAOA (h) Vanilla QAOA

Figure 2: Benchmark results evaluated across superconducting and trapped ion devices (the black X’s indicate benchmarks

that exceed the number of qubits available on the device). The results for each benchmark appear in the same order given

along the x-axis of (g) and (h). Each bar denotes the average performance over multiple benchmark runs while the error-bars

indicate a single standard deviation from the mean score. The specific score functions for each benchmark are given in

Sec. IV. In every benchmark run, we executed 2000 shots on the IBM devices, 1024 on the AQT device, and 35 on the

IonQ processor. The shot counts were selected to maintain a reasonable cost budget for collecting the benchmark results.

and evaluation of an Open benchmarking division, allowing

for a wider range of optimizations, for future work. The

goals of these two benchmarking divisions parallel the

design of the MLPerf benchmark suite [4].

VI. RESULTS

The results of the benchmark executions are shown in

Fig. 2. Benchmarks labeled with black X’s were too large

to fit on a device. As the width and depth of the benchmarks

increases, the scores obtained by the hardware tends to de-

crease. This is expected as it is harder to maintain a coherent

quantum state as the number of qubits and gate operations

grows. There are also cases where adding additional qubits is

less detrimental to performance than adding more gates. We

see this behavior in the results of the bit code (IonQ), VQE

(IonQ, Montreal, and Mumbai), and Hamiltonian simulation

(IonQ, Mumbai, and Toronto) benchmarks.

The Mermin-Bell results shown in Fig. 2b indicate that

the QPUs are able to exploit quantum effects and surpass

the classical limit denoted by the red line. However, this

is still a difficult benchmark — few processors are able

to meet the classical limit for the 4-qubit instance. The

high communication feature of the Mermin-Bell benchmark

(Fig. 1b) reflects the all-to-all circuit structure necessary to

measure the Mermin operator (Eq. 7). Indeed, we see that

the IonQ trapped ion device, which natively supports all-

to-all connectivity, achieves the best performance despite

having a higher two-qubit gate error rate than many of the

superconducting devices.

The importance of compatibility between circuit structure

and qubit topology is seen throughout the benchmark suite.

Although many of the superconducting devices have two-

qubit error rates lower than that of the trapped ion device,

the additional swap operations that must be inserted to match

the program connectivity quickly deteriorate performance

(Mermin-Bell, vanilla QAOA). When the connectivity of the

program matches that of the hardware, then the high quality

gates of the superconducting QPUs results in competitive
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(a) Including error-correction benchmarks. (b) Excluding error-correction benchmarks.

Figure 3: Heatmaps showing the correlation between application features and system performance. The correlations in (a)

were computed using all of the benchmark data, whereas in (b) the data from the phase and bit code benchmarks was

excluded.

Figure 4: Example of the impact the error correction (EC)

benchmarks have on the correlation between the application

features and system performance.

performance with the all-to-all connectivity of the trapped

ion QPU (VQE, Hamiltonian simulation, fermionic-swap

QAOA).

In Fig. 3a we show the correlations between the appli-

cation features introduced in Sec. III and the benchmark

scores. For comparison, we also include typical features such

as circuit depth and the number of qubits and two-qubit gates

which have been used to characterize quantum applications

in prior work [14], [17]. The coefficient of determination

(R2) for each feature-QPU pair can be interpreted as the

proportion of the variance in that QPU’s performance that is

attributable to that feature. The R2 values were obtained by

performing a linear regression over all benchmark scores for

that feature-QPU pair (see Fig. 4 for an example). For each

benchmark, the feature is treated as the independent variable

and the system performance as the dependent variable.

The two error correction benchmarks (Fig. 2c-d) have

especially low scores across the majority of the QPUs.

This is likely due to the costly RESET instructions used

in the bit and phase code benchmarks. Indeed, in Fig. 3a

the measurement feature has the strongest correlation with

performance for most of the superconducting QPUs (IBM-

Lagos-7Q is the exception). For superconducting devices

the measurement and reset operations are relatively long

compared to the coherence time of the qubits, and so the

information stored within the data qubits quickly begins to

decay as the number of error correction rounds increases.

In contrast, the readout times for trapped ion devices (de-

spite being many times longer than superconducting readout

times) are short compared to their long coherence times.

This allows the data qubits to sit idly within the ion trap,

waiting for the ancilla qubits to be measured and reset,

without decohering — resulting in little correlation between

the measurement feature and performance.

The overwhelming impact of mid-circuit measurements

on current system performance is revealed in Fig. 3b where

again the R2 correlation values are plotted, but in this case

the results of the bit and phase code benchmarks have

been excluded from the linear regression. When ignoring

the results of the error correction (EC) benchmarks, we note

improved correlation for many of the feature-QPU pairs. No-
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tably, the correlation of the entanglement-ratio and number

of 2-qubit gates features is greatly improved. This suggests

that, after RESET instructions, entangling operations have

the largest impact on system performance. Fig. 4 provides

an example of the linear regression performed over the

benchmark scores with and without the EC benchmarks. The

difficulty of successfully executing the RESET instructions

can be seen as the EC benchmarks have significantly lower

scores than expected given the value of their entanglement-

ratio features.

VII. DISCUSSION

The benchmark results presented in Sec. VI reveal the va-

riety of tradeoffs that are available to QC system designers,

and indicate that competitive advantages can be found by

focusing on applications which play to a system’s strengths

(e.g., faster gate speeds, higher fidelities, denser connectiv-

ity). For example, the IonQ device is able to make up for

lower two-qubit gate fidelities with better connectivity while

the superconducting systems with sparser connectivities are

still competitive due to their higher fidelity entangling gates.

The correlation results in Fig. 3 are a step towards

quantitative profiling of quantum programs. In particular,

the measurement feature highlights the outsized impact of

error correction routines on current system performance. The

design of future NISQ systems must focus on improving

these operations as mid-circuit measurements are a critical

component of quantum error-correcting codes.

Each benchmark was evaluated multiple times to discern

the mean system performance. This is partly due to (1)

time-variations in the calibrations and fidelities of individual

gate operations and (2) the ability of the compiler to find

good qubit mappings. The qubit mapping selected by the

compiler and the subsequent number of swap insertions has

a significant impact on performance since two-qubit gates

are so costly. This is evident in the increased variability

seen across the superconducting QPUs between the Vanilla

QAOA (Fig. 2h) and Fermionic-Swap QAOA (Fig. 2g)

benchmarks. Both benchmarks target the same task, but the

all-to-all connectivity of the Vanilla ansatz does not readily

match the nearest neighbor connectivity of the supercon-

ducting systems. This mismatch is resolved by the compiler

which determines a routing schedule among the qubits; a

step which introduces extra variability in the performance.

Even systems with superior gate fidelities can be severely

hampered by sub-optimal compilation. This is especially

relevant today when the most popular mode of access

is based on a cloud-compute model and the programmer

generally does not have total control over the compilation

process. A closer investigation of the relationship between

compilation and benchmark performance is an important

area of future work.

Cloud-based access models also impact our ability to

evaluate full variational applications. If the classical and

quantum processors are not tightly coupled, then the latency

incurred by queue wait times makes the evaluation of vari-

ational algorithms with more than 10s of iterations imprac-

tical. Systems which support this hybrid quantum-classical

programming model are only just starting to appear [91]. The

adoption and availability of this programming model will be

crucial for the benchmarking of full variational algorithms.

The cost of collecting the benchmark results presented

in this paper influenced our decision to restrict the number

of shots per benchmark for the IonQ device. Any quantum

benchmark suite will need to be repeatedly evaluated to track

the performance of quantum computers over time. The cost

of running these benchmarks incentivizes the construction

of benchmark suites that provide maximum coverage with

as few applications as possible.

VIII. CONCLUSION & OUTLOOK

SupermarQ is a constantly evolving benchmark suite that

adjusts to the fluctuating QC landscape, and it is built with

scalability in mind to match the qubit counts of future

devices. The included benchmarks are based on real-world

applications which makes the suite meaningful to a broad

range of use cases, and it provides superior coverage of the

application space compared to prior suites and those built

entirely from synthetic applications. We plan to open source

SupermarQ, which will enable community contributions of

additional benchmarks to keep pace with emerging applica-

tions.

Computer architects have always been on the forefront

of benchmark development for emerging technologies. The

SupermarQ suite was inspired by previous work aimed

at benchmarking newly emerging computational paradigms

like high-performance computers, chip multi-processors, and

machine learning systems. Quantum computing’s pace of

development is currently on an exponential trajectory which

has led to varying degrees of skepticism, excitement, and

hype. The only way to cut through the hype and accurately

ascertain the capabilities of this emerging technology is

by returning to the principled, systems-based approach to

benchmarking that is at the foundation of computer archi-

tecture.
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APPENDIX

A. Abstract

The artifact contains the source code used to generate,

evaluate, and compute the score of the benchmarks presented

in this paper. Since the benchmarks in this work utilized pro-

prietary quantum hardware that require valid access tokens,

this artifact uses circuit simulation in place of real hardware

evaluations. Users which have access to different quantum

hardware platforms can take the circuits generated within the

artifact and manually execute them. The artifact provides a

Jupyter notebook, python files, and benchmark data sets to

recreate the plots shown in Figures 1, 2, 3, and 4.

B. Artifact check-list (meta-information)
• Program: Cirq.
• Run-time environment: Jupyter kernel.
• Hardware: 6-Core Intel Core i7.
• Execution: Quantum circuit simulation.
• Output: Benchmark performance scores.
• Experiments: SupermarQ benchmark applications.
• How much disk space required (approximately)?: 1 GB

to store the artifact directory and python virtual environment.
• How much time is needed to prepare workflow (approxi-

mately)?: 10 minutes.
• How much time is needed to complete experiments (ap-

proximately)?: 30 minutes.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: Apache 2.0.
• Workflow framework used?: Jupyter notebook.
• Archived (provide DOI)?:
https://doi.org/10.5281/zenodo.5786391.

C. Description

1) How to access: The artifact is available

on Zenodo (10.5281/zenodo.5786391). The

source code and artifact notebook are zipped within

supermarq_hpca_ae.tgz.

2) Hardware dependencies: The results shown in the

paper require access to various quantum computers available

over the cloud. Since not all users will have the same access,

the artifact relies on quantum circuit simulation available

through the Cirq SDK. Any system which can run python

programs should be able to evaluate the artifact.

3) Software dependencies: The artifact requires the in-

stallation of the SupermarQ python package. The dependen-

cies are listed within requirements.txt.

D. Installation

The README.md contains detailed instructions to install

the SupermarQ python package. After downloading the

artifact zipfile, and extracting the contents, the SupermarQ

package can be installed via:

# cd SupermarQ_HPCA_Artifact
# pip install -r requirements.txt
# pip install -e .

The user can then open the jupyter lab with the command:

# jupyter lab

The file HPCA_Artifact.ipynb contains an overview

of the benchmarks and figures used in this paper.

E. Evaluation and expected results

The notebook HPCA_Artifact.ipynb contains ex-

amples showing how the SupermarQ benchmarks are gen-

erated and how the scores are computed using the results

of the circuit executions (in this case obtained via circuit

simulation). The simulations within the notebook utilize a

noise model with increasing amounts of noise. This is meant

to reflect the real-world execution of these benchmarks

on NISQ devices, and as the noise increases we expect

that the benchmark score will decrease. The notebook is

divided into three parts. The first section, Benchmarks,

shows how the benchmark circuits are generated and how

the scores are evaluated to create Fig. 2. The Features
section provides examples of the application feature plots

shown in Fig. 1. Finally, Correlations walks through

the process of creating Fig. 3 and 4. The Python code used

to generate the plots in this last section are contained in

plotting_functions.py and the raw data is stored

within the data directory.

F. Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-

review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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