NORTHWESTERN
UNIVERSITY

Computer Science Department

Technical Report Number: NU-CS-2020-15
December, 2020
A Simulator for Distributed Quantum Computing

Gaurav Chaudhary

Abstract

This project presents a simulator for distributed quantum computing by leveraging existing
guantum hardware and simulators to model a system of interconnected quantum computers.
Two well-known quantum computing simulators are used to achieve this: Qiskit and NetSquid.
Qiskit by IBM is a quantum information processing simulator with approximate models for
actual hardware by IBM and other companies. Qiskit supports two popular quantum
computing technologies, superconducting transmon qubits and ion traps, which make it an
ideal vehicle to model quantum processors. NetSquid is developed by QuTech at TUDelft.
NetSquid is a network simulator with support for network nodes as noisy quantum processors.
The work in this MS project leverages Qiskit to model quantum processors based on actual
hardware and uses those as nodes in a network simulation in NetSquid. By doing this, this
work aims to faithfully simulate distributed quantum computation.

Keywords

Quantum Computing, Distributed Quantum Computing, Quantum Networks, IBM Qiskit,
NetSquid

This work was partially supported by NSF award CCF-1453853.

MS Project

A Simulator for Distributed Quantum
Computing

By: Gaurav Chaudhary
Advisor: Professor Nikos Hardavellas
Committee: Professor Nikos Hardavellas (Chair), Professor Prem Kumar, Professor Randall Berry

Department of Computer Science, Department of Electrical and Computer Engineering,
Northwestern University

Contents
Abstract

1
2
3

5
6

Intro

duction

Materials and Methods

3.1
3.11
3.1.2

3.2
3.21
3.2.2
3.2.3
3.24

3.3
3.3.1
3.3.2
3.3.3
3.34

Qiskit
Basis Gate set for ibmqg_16_melbourne
Error Models in Device Backend
NetSquid
Quantum Processor
Quantum Channel
Quantum Network
Error Models in NetSquid
Architecture
Step 1 — Extracting the Noise Model from Qiskit
Step 2 — Recreating the Noise Model in NetSquid
Step 3 — Declaring a Quantum Processor with the Noise Model

Step 4 — Protocol with Noisy Processors

Port Validation and Discussion

4.1
4.2
4.3
4.4

CNOT
CNOT Chain
Teleportation

Distributed CNOT simulation

Future Work

References

O VW u O U U b~ W

N N N N N N N N N P P PP R R
© 00 U1 A W N N P O N W W » O o

Abstract

This project presents a simulator for distributed quantum computing by leveraging existing
quantum hardware and simulators to model a system of interconnected quantum computers.
Two well-known quantum computing simulators are used to achieve this: Qiskit and NetSquid.
Qiskit by IBM is a quantum information processing simulator with approximate models for
actual hardware by IBM and other companies. Qiskit supports two popular quantum
computing technologies, superconducting transmon qubits and ion traps, which make it an
ideal vehicle to model quantum processors. NetSquid is developed by QuTech at TUDelft.
NetSquid is a network simulator with support for network nodes as noisy quantum processors.
The work in this MS project leverages Qiskit to model quantum processors based on actual
hardware and uses those as nodes in a network simulation in NetSquid. By doing this, this
work aims to faithfully simulate distributed quantum computation.

2

Introduction

In the NISQ (Noisy Intermediate-Scale Quantum Computing) era, qguantum computers are
limited in the size of computations they can perform. It is challenging to increase the number
of physical qubits on a single chip. One of the major contributors of this is the difficulty of
maintaining a quantum state and preventing its interaction with the environment. To counter
the problem of thermal coupling and interaction with the environment, quantum computers
are cooled just above absolute zero using a dilution refrigerator. As a quantum computer
scales up, the cost of logistics, like cooling, rises exponentially. The cost of maintaining an
intermediate-scale quantum computer is enormous due to this. The largest quantum
computer that exists at the writing of this report is around 72-qubits.

To get around the problem of scaling up a single quantum computer, researchers have
proposed distributed quantum computers, which can leverage multiple intermediate-scale
guantum computers connected in a network to create one big logical quantum computer.
Distributed quantum computing is a broad area of research. There are architectural and
system-level trade-offs which need to be studied extensively: hardware technologies, the
distance between the nodes, entanglement generation and qubit transmission to name a few.
Since distributed quantum computers are in a nascent stage, a high-fidelity simulator is
needed to explore the design space.

Existing quantum simulators can simulate one aspect of the system well. For instance, Qiskit by
IBM is good at simulating quantum information processors. On the other hand, NetSquid by
QuTech is good at simulating quantum networks. This work aims to leverage the strengths of
Qiskit and NetSquid to create a new framework which can simulate distributed quantum
algorithms with high fidelity. The aim is to create a framework to help study system
architecture and algorithms and to uncover implications of important design decisions.

3 Materials and Methods

This project leverages features from two well-known quantum computing simulators: Qiskit by IBM,
and NetSquid by TUDelft. The requirement for a faithful distributed quantum computing simulator
is that it should be capable of simulating all the aspects of the system with appropriate error
models. Broadly, it should be able to simulate the following:

1. Quantum Processor or the nodes where the actual computation is performed

2. Quantum Information Channels or the physical link via which the quantum information
flows

3. Quantum Memories or the physical devices used to store quantum information

4. The interaction of all these components in a system and the errors accumulated due to
factors like latencies and stalling

The choice of two-component simulators: Qiskit and NetSquid is not a random one. The following
subsections describe the relevant functionality of Qiskit and NetSquid in detail.

3.1 Qiskit

Qiskit can be used to automatically generate a basic noise model for an IBMQ hardware devices and
use this model to perform simulations of Quantum Circuits to study the effects of errors which
occur on real noisy devices.

These automatic models are only an approximation of the real errors that occur on actual devices,
due to the fact that they must be built from a limited set of input parameters related to average
error rates on gates.

The model of an actual machine is generated using the calibration information reported in the
BackendProperties of a device which include:

T1-T2 constants for relaxation time
Readout error probabilities for each qubit
Gate errors for each basis gate on each qubit and allowed combinations for 2-qubit gates

PwnNeE

Gate lengths of each basis gate on each qubit

The code to generate a basic device model of ibmqg_16_melbourne (a 16-qubit quantum computer
by IBM) is given in Figure 3-1.

The provider is the user account created on IBM Qiskit website. The get_backend call to
ibmg_16_melbourne specifies the actual hardware device for which the simulation needs to be
performed. The ibmg_16_melbourne can be replaced with any other backend supported by Qiskit.
For instance, it can also be aqt_innusbruck which is a 6-qubit Trapped lon quantum computer by
AQT Technologies. This is another major advantage of Qiskit; it supports a wide variety of
technologies to act as possible backends.

The from_backend call extracts out the noise model from a given backend, that is, the 4 points
mentioned above. This is used as an argument into the execute function.

The coupling map describes the microarchitecture of the underlying hardware. It basically specifies
which qubits are closer to each other in the hardware. Consequently, this provides a constraint list
to perform two-qubit gates on the physical qubits.

from gqiskit.visualization import plot_histogram
from giskit.providers.aer.noise import NoiseModel

Build noise model from backend properties
provider = IBMQ.load account()

backend = provider.get_backend('ibmg 16 melbourne')
noise model = NoiseModel.from backend(backend)

W Get coupling map from backend
coupling map = backend.configuration().coupling map

Get basis gates from noise model
basis gates = noise model.basis gates

Make a circuit

circ = QuantumCircuit(3, 3)
circ.h(0)

circ.cx(0, 1)

circ.cx(1l, 2)

circ.measure([0, 1, 2], [0, 1, 2])

Perform a noise simulation

result = execute(circ, Aer.get backend('gasm simulator'),
coupling map=coupling map,
basis gates=basis gates,
noise model=noise model).result()

counts = result.get counts(0)

plot_histogram(counts)

Figure 3-1

The basis gate set in a noise model is a collection of the most basic gates which form the complete
gate set for a quantum processor.

3.1.1 Basis Gate set foribmqg_16_melbourne
e Identity Gate - | gate
e U1 gate — Rotation along the Z axis

Ui(A) = (; E?A)

e U2gate—

e U3gate—

U3(8,6,\) = (

e (X - Controlled X gate
® [Measurement gate

All the gates in the system are modelled by some combination of these gates. The errors
provided in the backend properties are given in terms of these basis gates.

Modelling of some common gates with basis gates in Qiskit.

Basis Gate Common Gate
u2 H
u3 X
Ul Z
u3 Y
Ul S
CX CX
U1(1)-->CX-->U1(1) cy
U2(1)-->CX-->U2(1) Ccz

Measure Measure

The following sub-section provides details on the error models provided by a given backend.

3.1.2 Error Models in Device Backend

3.1.2.1 TI1-T2 constants
T1-T2 constants together form the thermal relaxation error for a given qubit. This is
analogous to the decoherence model in quantum mechanics, where a quantum system
couples with its environment and loses the coherence of its state. This process appears to
be non-unitary if the system is studied in isolation but the overall system + environment
comes out to be unitary.

T1 is known as the amplitude damping time and T2 is known as the dephasing time.

These can be extracted for a given backend by use of the following API

Return T1, T2 and frequency values from a devices

device.thermal_relaxation_values (properties) Btk e

3.1.2.2 Readout Errors
Readout errors for a backend are provided as conditional probabilities. For an N-qubit
readout error, the probabilities are given as:

probabilities[m] = [P(8|m), P(1l]m), ---, P{2 ** N - 1]|m}]

Where P(j| m) is the probability of recording a measurement outcome of m as the value j.

For one qubit, the representation is as follows:

probabilities[2] =
1]

probabilities]

Readout errors can be extracted from a given backend by using the following API

Return readout error values from a devices

device.readout_error_values | rti
o = (properties) BackendProperties.

Which returns the readout errors in the following format for each qubit.
{P(1]0), P(0|1)}2 probabilities for measuring an orthogonal state

3.1.2.3 Gate Errors and Gate Lengths
Gate errors in Qiskit refer to as the depolarization errors when a gate is applied to a
particular qubit. Gate Length refers to the latency (ns) of the gate being applied on a
particular qubit.

Gate Errors and Gate Lengths can be extracted from the device backend by the following
API:

Return parameter error values from a devices

device.gate_param_values (properties
e (prop) BackendProperties.

This call returns the gate errors and length values in the following format @ A list of tuples
(name, qubits, time, error) for all physically possible combinations of qubits.

3.2 NetSquid

NetSquid is a quantum network simulation package for python. NetSquid incorporates all the
major components to faithfully simulate a quantum network. It does so by integrating a
guantum information processing simulator with an event-based classical network simulator.
NetSquid is very well suited to simulate distributed quantum systems, given that an actual
hardware processor is approximated as a quantum processor. NetSquid defines the
abstraction of a quantum processor to be used as a node in the network. It also defines
guantum/classical channels for quantum/classical information communication. It also
enables the user to incorporate custom noise models to all the components. NetSquid has
support for writing hardware-agnostic code by the quantum program abstraction.
Consequently, whenever the underlying hardware technology is changed, no code rewrite is
required. These components of NetSquid are described in detail in the following sub-sections.

3.2.1 Quantum Processor
A Quantum Processor extends the base class Quantum Memory and adds the functionality
of quantum computation to the memory. Instructions on a Quantum Processor can be
executed via a Quantum Program or directly by using the execute command. A Quantum
Processor takes as input all the possible physical instructions that it can execute.

Here is an example declaration of a quantum processor:

gproc = QuantumProcessor(

"TestQPD", num_positions=4,

mem_noise _models=[DepolarloiseModel (588)] * 4, phys_instructions=[
PhysicalInstruction(INSTR_INIT, duration=2.5, parallel=True),
PhysicalInstruction(INSTR_X, duration=1, topology=[1,2,3],

quantum_noise model=T1T2NoiseModel(T1=0.5)),

Physicallnstruction(INSTR_CNOT, duration=2, topology=[(2, 1), (1, 3)}]),
PhysicalInstruction(INSTR_MEASURE, duration=3, parallel=True)])

Here, the name of the processor is “TestQPD” with 4 qubits in total. The processor has a
DepolarNoise associated with all the qubits. Topology means the qubits that support the
given instruction. The quantum_noise_model argument specifies the noise applied to that
particular instruction. Duration specifies the time (ns) it takes to complete that instruction.

The example TestQPD processor supports the following instructions:

INIT: Initializes the qubits to state |0>. All qubits support it (no topology input)
X: BitFlip gate. Only qubits 1,3 and 3 support it with a relaxation error

CNOT: Can only be performed between qubits (2,1) and (1,3)

Measure: Applicable on all qubits

Now, instructions can be executed directly or via a quantum program:

e Directly executing instructions with an execute instruction call:

execute_instruction(self, instruction, qubit_mapping=None, str output_key="instr', bool physical=True,
bool check_qubit_mapping=True, *“parameters)

Examplel] gmemory.execute_instruction(instr.INSTR_INIT,[0],physical=True)

e Executing via a quantum program:

class CustomdProgram(QuantumProgram):
default_num_gubits = 2

def program(self):
ql, g2 = self.get_qubit_indices(2)
self.apply(INSTR_INIT, ql)
self.apply(INSTR_INIT, g2)
yield self.run()
self. apply(INSTR_X, ql)

self.apply(INSTR_CNOT, [ql, g2])
self.apply (INSTR_SIGNAL, physical=False)
self.apply(INSTR_MEASURE, gl, output key="ml")

[P B

elf.apply (INSTR_MEASURE, g2, output key="m2")
yield self.run{parallel=False)

Here, CustomQProgram extends the base class QuantumProgram
The program method needs to be overwritten with the user program

o vyield self.run() waits for the body of the program to finish (instructions can be
executed in parallel or sequential order)

3.2.2 Quantum Channel

Netsquid.components.qchanel defines a quantum channel which is used to transmit
guantum information. Now, gates can also be thought of as a quantum channel in time
rather than space. This has support for both types of transmission. This APl declares a
one-way quantum channel capable of transmitting qubits with a specified delay, noise and
loss.

As an example,

channel ¢2a = QuantumChannel("qchannel C2A", length=1length / 2,
models={"quantum loss model": FibreLossModel(p loss init=0.98), "delay model": FibreDe

Here, gchannel_c2a is a quantum channel from c to a with a standard FibreDelayModel and
a specific FibreLossModel.

Similarly, NetSquid also has support for a classical channel capable of transmitting classical
information with a given noise, loss and delay.

The above discussion brings us to the topic of a Quantum Network supported by NetSquid.
This is where all the above components are integrated.

3.2.3 Quantum Network

Quantum Network is a component to help create and manage a network of nodes and
connections.

As an example,

network = Metwork{name="test_network™)

network. add_nodes{nodes=[Node{ "carl”,

Here, first a network is declared with the name “test_network”. Two nodes, carl and evan
are added as nodes in the network. Carl has a QuantumMemory and evan has a

q

gmemory=QuantumMemory { "mem_carl”)}),

Node{"evan™, gmemory=QuantumProcessor{"mem_gvan")1])

QuantumProcessor included.

Connection of two nodes within a network can be done simply as follows:

network.add_connection{"alice”, "bob",
channel_to=QuantumChannel("quantum_channel™),
label="guantum™)

Here, alice and bob are connected via a quantum channel and the connection is a part of

the

network.

Quantum memories, quantum processors and quantum/classical channels can have custom errors
associated with them. The following subsection details the Error classes provided by NetSquid.

3.2.4 Error Models in NetSquid

As shown in Figure 3-2, NetSquid supports Classical, Quantum as well as Delay models for

Model
nelsquid. companents. models.mode!

4

Kay

Inherits fmn:t

—

ErrerModal

—

4‘—\

]

odel
netsquid. componeants.mode! delaymodels

'

ClassicalErrorModel

QuantumErmrorModel
netsquid. components.model. gemomodels

FibreDelayModel
nelsquid. companents.mode! delaymodels

5 3

i

FibreLoss Modeal
nefsguid. components. model.gemonmodels

DepolarMoiseModal
netsquid. components.model. gemonmodels

T1T2NoiseModel
netsguid. components. model.gemronmodels

Fibres.

The

QuantumErrorModel

class

Figure 3-2

has three

DepolarNoiseModel and T1T2NoiseModel.

3.2.4.1

FibreLossModel

derived

classes:

Describes a model for exponential photon loss on fibre optic channels.

class netsquid.components.models.qgerrormodels.FibreLossModel(p loss init=0.2,

p_loss_length=0.25, mg=None)

FibreLossModel,

3.2.4.2

3.2.4.3

Where,
® p_loss_init: The initial probability of losing a photon when it enters the channel
® p _loss_length: The photon survival probability per unit length (dB/km)
® rng: Random number generator to use

This error model can be passed to a quantum channel to make the connection noisy and
realistic.

DepolarNoiseModel
This model applies depolarization noise to the qubits.

class netsquid.components.models.qgerrormodels.DepolarNoiseModelldepolar rate,
time_independent=False, **kwargs)

Where,

o Depolar_rate: The probability that the qubit will depolarize with time.
e time_independent: If false, then this is the exponential depolarizing rate per unit
time (Hz). If true, this is the probability.

T1T2NoiseModel
This is a commonly used phenomenological noise model based on T1 T2 times. This is
more generally referred to as the decoherence model.

class netsquid.components.models.qgerrormodels.T1T2NoiseModel(T1=0, T2=0, "“kwargs)

Where,

e T1: Time constant of exponential amplitude damping.
e T2:Time constant of exponential dephasing component.

3.3 Architecture

Now that the relevant features of Qiskit and NetSquid are covered, let’s take a look at how these

features can be used to perform a truly distributed quantum computing simulation.

The figure below depicts the steps we take to prepare NetSquid for distributed quantum computing

simulations.

Extract the
error model

Declare in
Netsquid

Error Model R=TEes

in Netsquid

Declare a Use the

noisy Quantum processor in Protocol

a protocol with Noisy
Processor

Processor
with Error

Step 1: Extract out the error model of a given backend in Qiskit.

Step 2: Recreate the Error model in NetSquid.

Step 3: Use the Error Model to declare noisy QuantumProcessors in NetSquid.

Step 4: Write the Node Protocol with Noisy Processors.

3.3.1 Step 1 - Extracting the Noise Model from Qiskit
As discussed in section 3.2, Qiskit provides a set of APIs to extract out a noise model from a

given backend.

The following is the common code excerpt that applies to all the code snippets after this.

Lfrom giskit.providers.
|from giskit.providers.
from giskit.providers.
from giskit.providers.
from giskit.providers.
lfrom giskit.providers.
|from giskit.providers.

aer.
aer.
aer.
aer.
aer.
aer.
aer.

noise.
noise.
noise.
noise.
noise.
noise.
noise.

device.
device.

device
device
device
device
device

models import basic device readout errors
models import basic device gate errors
import gate length values

import readout error values

import thermal relaxation values

import gate error values

import gate param values

backend = provider.get backend('ibmg 16 melbourne')
properties = backend.prnpﬁrtiesi!

3.3.1.1 Readout Errors for ibmq_16_melbourne

Code to extract out the readout error values in Qiskit:

readout errors = readout error values(properties)
for el, e2 in readout error values(properties):

print{"Qubit: "+str{i)+" --=»

P[1|@]: “+str{el)+" P[O]|1]: "+str{e2))

Resulting error values of the ibmq_16_melbourne:

P[1]@]:
P[1]@]:
P[1]@]:
P[1]@]:
P[1]@]:
P[1]|0]:
P[1]|0]:
P[1]@]:
P[1]|0]:
P[1]|@©]:

(P S I
R

T Y
T

P[1]|@]:
P[1]|8]:
P[1]|@]:
P[1]0]:

D.0112
.02080000000000004
D.009199999999999986
0.1058

0.0242

J.0106
D.06679999999999397
.0376
.04259999999999997

Pl[e|1]: ©.07120000000000004
P[B|1]: ©.067
P[O|1]: ©.0552

P[@]1]: ©.22
P[@]1]: ©.07720000000000005
P[O|1]: ©.083

P[@]1]: 0.044599999999995997
P[@]1]: ©.1296
P[@]|1]: ©.0796

P[@]1]: ©.0984
.0146 P[O|1]: ©0.09360000000000002
L1372 P[08|1]: 0.19420000000000004
.099199999999999997 P[8|1]: ©.1168
.0556

P[O]1]: ©.11819999999999997
P[O|1]: ©.06320000000000003

P[1]0]: ©.0364

3.3.1.2 Thermal Relaxation Values for ibmq_16_melbourne

Code to extract out the Thermal Relaxation values from Qiskit:

for t1, t2, freq in thermal relaxation values(properties):
print{"Qubit: “+str{i}+" --= Tl: "+str{tl)+" T2: "+str{t2))

Resulting error values for ibmq_16_melbourne:

47066.97419877669 T2:
52526.63323349799 T2:
55578.654050151854 T2: 55862.436846446806
79276.0188737155 T2: 16953.82899016347
50998.48559584093 T2: 44778.50328360147
18420.78190673815 T2: 33939.084535952175
70854.2657475816 T2: 79983.17480736015
39232.845641894986 T2: 14304.851612143295
152115.68588624278
56380.33782842999
65144 .28733236218
79049.46331927988
59798.80113649136
31753.111374971857
47811.23966B61264

72813.08549522988
61776.29720005739

93839.02175863666 T2:
46626.117888887966 T2:
64069.65977930918 T2:
56346.88810339914 T2:
60098.57226242237 T2:
32027.26475765039 T2:
40069.55723129425 T2:

3.3.1.3 Depolar gate errors and gate lengths
Code to extract out the Gate Errors and Gate Lengths from Qiskit:

for name, qubits, time, error in gate param values(properties):
print("Name: "+striname}+" Qubit: “+5L|tqub1tﬂl+” Gate Length(ns): "+str(time)+"

Gate Depolar Error: "

Resulting Error and Gate Lengths for ibmqg_16_melbourne:

Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Hame:

u2
u3
id
ul
u2
u3
id
ul
u2
u3
id
ul
u2
u3
cX
cX
cX
cX
cX
cX
cX
[
[
[
[
cX
cXx
cX
cX
cX
cX
cX
X
X
cXx
[
[
X
X
X
cXx
cx
cXx
cXx
cXx
cXx
cx
X
X
X
X
X
cx
X

Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:

Gate Length{ns):
Gate Length{ns):
Gate Length{ns):
Gate Length{ns):
Gate Length{ns):
Gate Length{ns):
Gate Length{ns):
Gate Length{ns):
Gate Length(ns):
Gate Length(ns):
Gate Length(ns):
Gate Length(ns):
Gate Length(ns):
Gate Length(ns):

Gate Length(ns):

53.33333333333333 Gate Depolar Error: 0.0085173799851739677
106.66666666666666 Gate Depolar Error: 0.0810344922882988827
53.33333333333333 Gate Depolar Error: 0.0010377885660447055
8 Gate Depolar Error: @
53.33333333333333 Gate Depolar Error:
106.66666666666666 Gate Depolar Error:
142.22222222222223 Gate Depolar Error:
8 Gate Depolar Error: @
142.22222222222223 Gate Depolar Error: 8.081943855802352161
284.44444444444446 Gate Depolar Error: 0.0838839330293238827
53.33333333333333 Gate Depolar Error: 0.0086212687154268972
8 Gate Depolar Error: @

53.33333333333333 Gate Depolar Error: 0.0086212687154268972
106.66666666666666 Gate Depolar Error: 0.08124215145603701606
743.1111111111111 Gate Depolar Error: 0.8170547132480895987

0.0010377885660447055
0.0020745001269817376
0.0081943855802352161

Gate Length(ns):
Gate Length(ns):
Gate Length(ns):

Gate Length(ns)
Gate Length(ns):
Gate Length(ns):

Gate Length(ns)
Gate Length(ns):
Gate Length(ns):

Gate Length(ns)
Gate Length(ns):
Gate Length(ns):

Gate Length(ns)
Gate Length(ns):
Gate Length(ns):
Gate Length(ns):
Gate Length(ns):
Gate Length(ns):
Gate Length(ns):
Gate Length(ns):
Gate Length(ns):
Gate Length(ns):
Gate Length(ns):
Gate Length(ns):

Gate Length(ns)

Gate Length(ns)

Gate Length(ns)

Gate Length(ns):

Gate Length(ns):

Gate Length(ns):
Gate Length(ns):

Gate Length(ns):

Gate Length(ns):
Gate Length(ns):

Gate Length(ns):

Gate Length(ns):
Gate Length(ns):

Gate Length(ns):

Gate Length(ns):

: 860.4444444444443
: 1312 Gate Depolar Error: 0.03556093583834437
: 1002.6666666666666 Gate Depolar Error: ©.030672986201688818

970.6666666666666 Gate Depolar Error: 0.82542473202788037
689.7777777777777 Gate Depolar Error: 0.817054713248895987
355.55555555555554 Gate Depolar Error: 8.012528988755406784

1137.7777777777778 Gate Depolar Error: 8.844176665543836896
408.8888686888868886 Gate Depolar Error: ©.012528988755406784
988.4444444444443 Gate Depolar Error: 0.824714536632426898

1696 Gate Depolar Error: 0.049049473998456966
1041.7777777777778 Gate Depolar Error: ©.024714536632426898
785.7777777777777 Gate Depolar Error: 0.01832611145947849

867.1111111111111 Gate Depolar Error: 8.831113553874052235
732.4444444444445 Gate Depolar Error: 8.81832611145947849
789.3333333333333 Gate Depolar Error: 0.83004930207494594

1169.7777777777776 Gate Depolar Error: 8.835560935890834437
647.1111111111111 Gate Depolar Error: 8.83004930207494594
1472 Gate Depolar Error: 0.847620832778709052
860.4444444444443 Gate Depolar Error: 8.83666627390582228
1614,2222222222222 Gate Depolar Error: 0.047620327787896052
995,5555555555555 Gate Depolar Error: 6.822623481341894847
775.1111111111111 Gate Depolar Error: ©.827860475752815778
1137.7777777777778 Gate Depolar Error: 0.022623481341894847
917.3333333333333 Gate Depolar Error: 0.827860475752815778
1159.111111111111 Gate Depolar Error: 0.0838946882576326384
1002 .6666666666666 Gate Depolar Error: 0.03666627390582228
1016.88886888888888 Gate Depolar Error: 0.030946882576326384
Gate Depolar Error: ©.030672986201688818

945.7777777777777 Gate Depolar Error: 0.029146211166072244
753.7777777777777 Gate Depolar Error: 8.831113553874852235
1688 Gate Depolar Error: 0.029146211166872244
597.3333333333333 Gate Depolar Error: 8.820257732923467886
1642.6666666666665 Gate Depolar Error: 0.049049473998456966
650.6666666666666 Gate Depolar Error: ©.820257732923467886
753.7777777777777 Gate Depolar Error: ©.020048528380061548
995.5555555555555 Gate Depolar Error: 8.844176665543836896
611.5555555555555 Gate Depolar Error: ©.020048528380061548
657.7777777777777 Gate Depolar Error: ©.02971525763666899
917.3333333333333 Gate Depolar Error: ©.02542473202708037
515.5555555555555 Gate Depolar Error: ©.02971525763666899

Name :
Name:
Name :
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name :
Name:
Name:
Name:
Name:
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :
Name :

id
ul
u2
u3
id
ul
u2
u3
id
ul
u2
u3
id
ul
uz2
u3
id
ul
u2
u3
id
ul
u2
u3
id
ul
u2
u3
id
ul
u2
u3
id
ul
u2
u3
id
ul
uz2
u3
id
ul
uz2
u3
id
ul

Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:
Qubit:

D OWD D D O 0D 0D 00~~~ OO O O A LA A WA W W W R RS R R

o e e e
o O O (D D ot St st s s s et R e e e e et et s et e e e o e Ao e i i Al A R R e R

Gate
Gate |
Gate |
Gate |
Gate |
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate

Gate

Gate

Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate
Gate

Gate

Gate

Length(ns):
Length{ns):
Length(ns):
Length{ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):

Length(ns):
Length(ns):

Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):
Length(ns):

Length(ns):
Length(ns):

Length(ns):

Length(ns):
Gate Length(ns):
Gate Length(ns):
Gate Length(ns):
Gate Length(ns):
Length(ns):

53.33333333333333 Gate Depolar Error: 9.0806231992420577364
® Gate Depolar Error: @
53.33333333333333 Gate Depolar Error: 8.0806231992420577364
106.66666666666666 Gate Depolar Error: ©.001246010106828239
53.33333333333333 Gate Depolar Error: 8.0806599902438002046
® Gate Depolar Error: @
53.33333333333333 Gate Depolar Error: 8.0806599902438002046
106.66666666666666 Gate Depolar Error: ©.0813195449084785864
53.33333333333333 Gate Depolar Error: ©.0808881045631594462
® Gate Depolar Error: @
53.33333333333333 Gate Depolar Error: ©.0808881045631594462
106.66666666666666 Gate Depolar Error: 0.0817754203966038329
53.33333333333333 Gate Depolar Error: ©.0805216837914342854
® Gate Depolar Error: @
53.33333333333333 Gate Depolar Error: 8.0805216837914342854
106.66666666666666 Gate Depolar Error: 0.0810438954288982505
53.33333333333333 Gate Depolar Error: 8.0816942472586163867
® Gate Depolar Error: @
53.33333333333333 Gate Depolar Error: 8.08169424725086163867
106.66666666666666 Gate Depolar Error: 0.08338562408274865446
142.22222222222223 Gate Depolar Error: ©.082621838916525314
® Gate Depolar Error: @
142.22222222222223 Gate Depolar Error: ©.082621838916525314
284.44444444444446 Gate Depolar Error: ©.8052368837937464695
142.22222222222223 Gate Depolar Error: ©.0810543979899390662
@ Gate Depolar Error: @
142.22222222222223 Gate Depolar Error: ©.0810543979899390662
284.44444444444446 Gate Depolar Error: ©.802187684224757845
142.22222222222223 Gate Depolar Error: ©.0818152155267723913
@ Gate Depolar Error: @
142.22222222222223 Gate Depolar Error: 0.0818152155267723913
284.44444444444446 Gate Depolar Error: ©.8036271360461362923
53.33333333333333 Gate Depolar Error: 0.8005612989405485931
@ Gate Depolar Error: @
53.33333333333333 Gate Depolar Error: 8.0805612989485485931
106.66666666666666 Gate Depolar Error: ©.0811222828245964767
142.22222222222223 Gate Depolar Error: 0.0817273405189931858
® Gate Depolar Error: 0
142.22222222222223 Gate Depolar Error: ©.8817273485189931858
284.44444444444446 Gate Depolar Error: ©.0034516973327177736
142.22222222222223 Gate Depolar Error: ©.00149219463111301
® Gate Depolar Error: @
142.22222222222223 Gate Depolar Error: ©.80149219463111301
284.44444444444446 Gate Depolar Error: 8.0029821614191994916
53.33333333333333 Gate Depolar Error: 0.8005173799851739677
8 Gate Depolar Error: 0

3.3.2

3.3.2.1

Step 2 — Recreating the Noise Model in NetSquid

This section describes the details of porting a given noise model to NetSquid. This contains
details on how to port the readout errors, thermal relaxation errors, gate errors and gate
lengths to NetSquid.

The following code is common to all the subsequent sections:

from
from
from
from
Ampo
impo
impo
impo
impo
from
from
from
Trom
Trom
from
from
from
from
from
from

netsquid.components.models.gerrormodels import DepolarNoiseModel, DephaseNoiseModel, T1T2NoiseModel, MeasureNoiseModel, FibrelLossModel
netsquid.components.models.delaymodels import FibreDelayModel, FixedDelayModel

netsquid.util.datacollector import DataCollector

netsquid.qubits.qformalism import QFermalism, set gstate formalism

rt netsquid as ns
rt pydynaa

rt netsquid.qubits.ketstates as ks

rt netsquid.qubits.qubitapi as gapi

rt netsquid.components.instructions as instr
giskit import IBMQ, Aer
giskit.circuit.library import XGate

giskit.providers.
giskit.providers.
giskit.providers.
qiskit.providers.
qiskit.providers.
qiskit.providers.
giskit.providers.
giskit.providers.
giskit.providers.

aer.
aer.
aer.
aer.
aer.

noise
noise

noise.
noise.
noise.
.noise.
.noise.
.noise.
.noise.

import
import

device.
device.

device
device
device
device
device

Porting Readout Errors
Readout errors are measurement errors. Once a qubit is measured, the error is applied on
the classical outcome with some probability.

NoiseModel

Quantumgrror

models import basic_device readout errors
models import basic_device gate errors
import gate length_values

import readout_error_values

import thermal_relaxation values

import gate error_values

import gate param values

Here is the code to port the readout errors from Qiskit to NetSquid:

for

el, e2 in readout error values(properties):
#print("Qubit:
measure error = MeasureNoiseModel(el,e2)

physical I.append(PhysicalInstruction({instr.INSTR MEASURE, duration=1, parallel=False, topology=[i],

1=i+1

"+5tr(i)+"

- P[1]8]: “+str{el)+" P[O]|1]: “"+str{e2))

g noise model=measure error, apply q noise after=False))

e physical_lis just a python list to contain all the physical instructions that Melbourne
supports.
® MeasureNoiseModel is a custom class created specifically for this port. Here are the

details.

3.3.2.2

class MeasureNoiseModel (QuantumErrorModel):
"""Mpdel for applying Measure noise to qubit(s).

def init (self, ple®, pel, **kwargs):
super()._init_ (**kwargs)
self.pdl = pdl

| self.ple = ple

@property
def pol({self):
return self.properties['p8l’"]

@pol.setter
def pol(self,pol):
self.properties['pol'] = pol

@property
def ple(self):
return self.properties[’'ple’]

@ple.setter
def ple(self,plo):
self.properties['plé’'] = pl@

def error operation(self, qubits, delta time=0, **kwargs):

"““Error operation to apply to qubits.

pmax = max(self.ple,self.pdl)

probIl = 1 - self.pdl
probX = self.pdl
probY = 06

probZ = @

for qubit in qubits:
ns.qubits.qubitapi.apply pauli noise(qubit, (probI, probX, probY, probZ))
ns.qubits.qubitapi.combine qubits{qubits)

The error operation defines how the measurement error in applied in NetSquid.
Note that this is a pessimistic approximation of the error in Qiskit. The maximum of
P[1]0] and P[0]1] is taken and the outcome is flipped with that probability. The for
loop is present to take care of any qubits in shared or entangled states.

Measure Noise is applied whenever the physical instruction INSTR_MEASURE is
called on the qubit specified by the topology.

Note that readout_error_values is a Qiskit construct and Physicallnstruction is a
NetSquid construct.

Porting Thermal Relaxation Errors
As discussed before, thermal relaxation errors define the decoherence model of quantum

systems.

The code to port the thermal relaxation from Qiskit to NetSquid is given below:

1=0

relax error = T1T2NoiseModel()
for t1, t2, freq in thermal relaxation values(properties):
#print("Qubit: "+str(i)+" --=> T1: "+stritl}+" T2: "+str{t2}}
i=i+l
relax _error += T1T2NoiseModel(T1=t1*18068, T2=t2#1080, qiskit model=False)

Thermal_relaxation_values is a Qiskit construct giving the T1 T2 values of
Melbourne. The values are multiplied by 1000 because Qiskit provides the values
in us whereas NetSquid expects the values in ns.

relax_error is NetSquid T1T2NoiseModel, adding the relax errors for all the qubits
concatenates the noise model and forms a single decoherence model for
ibmg_16_melbourne.

relax_error can be applied to quantum memory as follows:

processor = QuantumProcessor({"quantum processor”, num_positions=15,
memory noise models=relax errorf]
phys instructions=physical I)

Here, a 15-qubit quantum processor is declared in NetSquid with relax_error
(decoherence model for Melbourne) as a memory_noise_model.

A limitation of NetSquid’s T1T2NoiseModel is that it does not support a
non-unitary model of decoherence (when T1<T2). To get around this problem, a
custom decoherence model is written. The details are as follows:

if self.T2 > self.T1:

tl = self.Tl
t2 = self.T2
time = t

excited state population = @
if tl == np.inf:

ratel = @

p reset =0
else:

ratel = 1 / t1

p reset = 1 - np.exp(-time * ratel)
T2 dephasing rate
if t2 = np.inf:
rate2 = @
exp t2 =1
else:
rate2 = 1 f t2
exp t2 = np.exp(-time * rate2)
Qubit state equilibrium probabilities
pd = 1 - excited state population
pl = excited state population
chan = Choi(
np.array([[1 - pl1 * p reset, 8, 8, exp t2],
[8, pl * p reset, @, 0], [@, 6, p® * p reset, 6],
[exp t2, 8, 0, 1 - p®@ * p reset]]))
k = Kraus({chan)
klist = k.data
if k.is cptp():
self.apply kraus error(qubit, klist)
return

Here, Choi and Kraus are Qiskit’s constructs and apply_kraus_error is a custom
Kraus model written for NetSquid.

def apply kraus error(self, qubit, operator}:

op = []

i=20

for m in operator:
s = "k" + str{i}
op.append(ns.qubits.operators.Operatoris, m))
i=isql

ns.qubits.qubitapi.multi operate([qubit], op)

e The Kraus matrices given by k.data are converted into a list of operators.
e The multi_operate function does the following operation which is similar
to the definition of Kraus’ evolution model:
o Foragiven list of operators O, and a quantum state 0, the
evolution is defined as:

e(p) = X; w;0;p O}

3.3.2.3 Porting Gate Errors and Gate Lengths to NetSquid
Gate errors are the depolarization errors when a specific gate is applied to a specific
qubit. Gate lengths represent the latency of the application of a gate on a specific qubit.
The code to port the gate errors and lengths from Qiskit to NetSquid is given below:
lu2 list=[]
for name, qubits, time, error in gate param values(properties):
print{“Name: "+striname}+" Qubit: "+str{qubits)+" Gate Length(ns): "+str(time)+" Gate Depolar Error: "+strierror))
Dep Noise = DepolarNoiseModel({depolar rate=error,time independent=True)
| if name=="id":
| physical I.append(PhysicalInstruction(instr.INSTR I, duration=time, parallel=True, topology=qubits,
I q noise model=Dep Noise, apply g noise after=False))
elif name=="ul":
physical I.append(PhysicalInstruction(instr.INSTR Z, duration=time, parallel=True, topology=qubits,
q noise model=Dep Noise, apply g noise after=False))
physical I.append(PhysicalInstruction(instr.INSTR S, duration=time, parallel=True, topology=qubits,
q noise model=Dep Noise, apply g noise after=fFalse))
elif name=="u2":
| physical I.append(PhysicalInstruction(instr.INSTR H, duration=time, parallel=True, topology=qubits,
q noise model=Dep Noise, apply g noise after=False))
u2 list.append([qubits,time,error])
elif name=="u3":
physical I.append(PhysicalInstruction(instr.INSTR X, duration=time, parallel=True, topology=qubits,
q _noise model=Dep Noise, apply q noise after=False))
physical I.append(PhysicalInstruction(instr.INSTR Y, duration=time, parallel=True, topology=§ubits,
q_noise model=Dep Noise, apply g _noise after=False))
elif name=="cx":
ql1,q2 = qubits
physical I.append(PhysicalInstruction(instr.INSTR _CNOT, duration=time, parallel=True, topology=[(ql,q2}],
q_noise_model=Dep Noise, apply g_noise_after=fFalse))
q u2, time u2, error u2 = u2 list[q2]
Dep Moise U2 = DepolarNoiseModel(depolar rate=error u2,time independent=True)
combined = Dep Noise + Dep Noise U2*2
physical I.append(PhysicalInstruction(instr.INSTR CZ, duration=time+2*time u2, parallel=True, topology=[(ql,q2)],
q_noise model=Dep Noise, apply q noise after=fFalse))
The mapping of the basis gates of Qiskit to the gates used in NetSquid is given below:
Basis Gate in Qiskit NetSquid Gate
u2 H
u3 X
U1l 4
u3 Y
Ul S
CX CX
U1(1)-->CX-->U1(1) CcY
U2(1)-->CX-->U2(1) cz
Measure Measure
After doing these steps, a complete list of noisy instructions (physical_I) and a complete

decoherence model (relax_error) for the quantum processor is available. The next step is to declare
a quantum processor with the given error model in NetSquid.

3.3.3 Step 3 — Declaring a Quantum Processor with the Noise Model

def create processor(depolar rate, dephase rate):
We'll give both Alice and Bob the same kind of processor
Bhysical I.append(PhysicalInstruction(instr.INSTR INIT, duration=1, parallel=True))
processor = QuantumProcessor("quantum processor”, num_positions=15,
memory noise models=relax error,
phys instructions=physical I)
return processor

The create_processor function creates a quantum processor with physical_| instructions
and relax_error decoherence model. Note that relax_error and physical_I are globals in this
piece of code.

3.3.4 Step 4 — Protocol with Noisy Processors
The following code shows a sample network using the noisy processors as nodes.

Setup nodes Alice and Bob with guantum processor:

alice = Node("Alice", gmemory=create processor{depolar rate, dephase rate))
bob = Node("Bob", gmemory=create processor({depolar rate, dephase rate))

Create a network

network = Network("Teleportation network")

network.add nodes([alice, bob])

Here, two nodes (Alice and Bob) are created using the create_processor function. A
network called Teleportation network is declared and the quantum processors are added to
the network.

For instance, the following code shows the protocol that Alice follows:

class BellMeasurementProgram(QuantumProgram) :
“““program to perform a Bell measurement on two qubits.

Measurement results are stored in output keys "M1" and "M2"

default num qubits = 2

def program(self):
ql, 92 = self.get qubit indices(2)
self.apply(instr.INSTR CNOT, [gl, q2])
self.apply(instr.INSTR H, gl)
self.apply(instr.INSTR MEASURE, gl, output key="M1"
self.apply(instr.INSTR MEASURE, g2, output key="M2"
yield self.run()

class BellMeasurementProtocol (NodeProtocol):
""“protocol to perform a Bell measurement when qubits are available.

def run(self):
qubit _initialised = False
entanglement ready = False
qubit init program = InitStateProgram()
measure program = BellMeasurementProgram()
self.node.gmemory.execute program(qubit init program)
while True:
expr = yield (self.await program(self.node.gmemory) |
self.await port input(self.node.ports["gin charlie"]))
if expr.first term.value:
qubit initialised = True
elif expr.second term.value:
entanglement ready = True
if qubit initialised and entanglement ready:
Once both qubits arrived, do BSM program and send to Bob
yieldflself.node.gmemory.execute program(measure program)
ml, = measure program.output["M1"]
m2, = measure program.output[“M2"]
self.node.ports[“cout bob"].tx output((ml, m2))
self.send signal(Signals.SUCCESS)
qubit initialised = False
entanglement ready = False
self.node.gmemory.execute program({qubit init program)

The protocol for the Node Alice can be defined as follows:

protocol alice = BellMeasurementProtocol(alice)

This completes the port of the noise model from Qiskit to NetSquid. The following section describes
our validation of the port and discusses important observations from the results.

4 Port Validation and Discussion
This section details the experimental validation of porting the noise model from Qiskit to
NetSquid. The validation of the port is performed by running three tests both on Qiskit and
NetSquid and then comparing the results.

The three test cases used are CNOT, CNOT_Chain and Teleportation.

The following sub-sections list the details of each.
4.1 CNOT

g0o -
q01
q02
q03
q04
q0s :
cO —= —t

-

e —

R PPN I NN FEN T -

|
|
|
|
|
T
I
i
|
|
i
1
|
i
i
|
|
|

The figure shows the schematic of the circuit. Qubit q0, is initialized in the |1> state and a CNOT is
performed between q0, and q0,. After that, the two qubits are measured, and the results of the
measurements are recorded. This entire process is repeated 1000 times and the results are
aggregated. A successful run results in measuring 11. Due to errors in the noisy quantum processor,
other results will also be recorded with some probability.

The following figure presents the average probability and 95% confidence interval of observing each
of the possible measurement outcomes in Qiskit and our modified version of NetSquid when
measuring qubits q00, q01:

1
=)
T o8 0.7 Q779
O . —
o
O
bo
E 0.6
e |
S
£ 0.4
©
£ 02
= 0.085 0092
o 0. (_1:0_69 0.0i? 006 ﬁ) !
2 0 E
E ”OOII lIOlIF Illoll !Ill”

M Qiskit ™ Netsquid

As clear from the figure, the port successfully recreates the results on small circuits consisting of
one or two qubits.

® Success probability with 95% Confidence Interval in Qiskit = 0.788 + 0.0122
® Success probability with 95% Confidence Interval in NetSquid = 0.779 + 0.0124

4.2 CNOT Chain

q00 l i

qol w l
q0: &

Q1

q0s3 l

o @
q0s

0 $0 w1

The figure shows the schematic of the CNOT chain circuit. Qubit g0, is initialized in the [1>
state and a series of CNOT gates are performed as shown. In the end, qubits g0, and q0, are
measured. This process is repeated 1000 times and the average rate of success (g0, q0,
measurement outcome 11) is recorded for both Qiskit and NetSquid.

Here is the distribution of measurement for qubits q0,, q0,:

1
=t
% 0.8
%I ' 0.7 732
=
[=Ta]
o=
S 0.6
o
[aH]
£
© 04
Z
E
_.g
o 0.2 0.137 049
[

0

IIGGII IIUlII Illoll Illlll

W Qiskit M Netsquid

As shown in the chart, the success rate of Qiskit and NetSquid are very close (within 0.1%
for the “11” case). This shows the port is successful for circuits with high latencies and a
large number of gates spanning multiple qubits.

® Success probability with 95% Confidence Interval in Qiskit = 0.731 + 0.013
® Success probability with 95% Confidence Interval in NetSquid = 0.732 + 0.013

4.3 Teleportation

q0o ' -—~ H

n B e

q0; “__E‘

q0s

|

q04

q0s

c0

cl &

0x1

c2 8

0x1

The circuit shown above is a teleportation circuit. Qubit q0, is prepared in the |1> state.
Then, qubits q0, and qO, are entangled. Maximally entangling q0,, q0, is not part of the
teleportation protocol; we do it simply to place these qubits in a maximally entangled initial
state before they participate in the teleportation of q0, to q0,. Subsequently, teleportation
is performed, where the state of qubit q0, is teleported to qubit q0,. Lastly, the qubit q0, is
measured. This process is repeated 1000 times and the rate of success (q0, measurement
outcome 1) is recorded.

The following is the comparison of the experimental results in Qiskit and our modified
version of NetSquid:

S 085 0.823
o

0o 0.8
£

5

s

7] 0.6
&

G

>

£ 04
=

3]

0

2

o 0.2

0

"Measurement Qutcome 1"

MQiskit M Netsquid

The chart above shows that the success rates are very close (within 0.3%). This proves that
the port is successfully recreating the results even when maximally entangled states are
involved in the computation.

The above three results prove that the port is successful and the quantum processors in
NetSquid are behaving as if they were ibmq_16_mebourne.

® Success probability with 95% Confidence Interval in Qiskit = 0.82 + 0.0115
® Success probability with 95% Confidence Interval in NetSquid = 0.823 + 0.0114

4.4 Distributed CNOT simulation
To demonstrate the usefulness of the port, a simulation of a distributed CNOT gate is
presented in this section.

Classical

Control qubit initialize (Correction and CNOT)

Figure 4-1

Figure 4-1 shows the network diagram of a distributed CNOT computation.

Alice and Bob are noisy quantum processors based on the ibmq_16_melbourne noise
model.

Charlie is an entanglement generation source, generating an entangled pair of
photons with an entanglement rate f (f = 4e4/node_distance) and fidelity 0.95, where
node_distance is the distance in km between Alice and Bob. Charlie is assumed to be
located exactly in the middle of the distance between Alice and Bob.

The connections shown in orange are quantum connections and the connection
shown in blue is a 2-bit classical connection.

The error model of Quantum connections is described with a default
FibreDelayModel() and a default FibreLossModel() available in NetSquid.

The error on the classical connection is described by a default FibreDelayModel().
Note that this circuit assumes perfect transduction, i.e., the photons sent by Carlie are
transduced to a superconducting qubit perfectly.

The protocol of Distributed CNOT is as follows:

Charlie generates an entangled pair every node_distance/4e4 seconds and sends one
photon to Alice and one to Bob via the quantum channels shown in orange.

Alice prepares a qubit in |1> state and performs a CNOT and Hadamard on the
received qubit (part of teleportation).

After those operations are finished, Alice measures the prepared qubit and the
received qubit. Alice sends the 2-bit measurement results over to Bob via a classical
connection.

Bob waits for the photon from Charlie and the 2-bit classical data from Alice. Once bob
has received both, Bob performs the correction protocol on the received qubit (CX and
CZ based on classical data as per the teleportation protocol).

Once bob has performed the correction, Bob performs a CNOT between the corrected
qubit and another qubit (position 1) in the |0> state.

Finally, the target qubit of the CNOT at Bob’s side is measured and the results are
recorded.

Success is defined by measurement outcome 1 since the control should have been in
| 1> state and target in | 0> state.

The simulation is run for 1000 repetitions and the fidelity is plotted as a function of the
distance between Alice and Bob, with Charlie exactly in the middle.

Here are the results of the simulation:

0.7

0.574

0.6 0.533

0.464
0.5 0.435

Fidelity
o o o
(] w =

o
'_‘-

10Km 20Km 40Km 80Km
Distance Alice-Bob (Charlie in Middle)

These numbers reflect the fidelity of a distributed CNOT in the case of a perfect
Transduction. Taking transduction into account will render the distributed CNOT
impractical in our setting (superconducting nodes connected by a photon-based
guantum channel) due to the following reasons.

The efficiency of transduction between superconducting transmons and photons is
0.88*10” [1].

The entanglement generation and distribution rate to two nodes that are 10 Km apart
is 4000 entangled photon pairs per second, which means that the entangling source
will generate a successful entanglement once every (1/0.95) * 1/4000 = 263us (0.95 is
the fidelity of entanglement generation).

Now, since the transduction is performed on both Alice’s and Bob’s side, the
probability of a successful transduction of an entangled pair is (0.88*%10°)*=0.77*10™.
Which means that a successful entanglement of superconducting qubits at Alice and
Bob is generated every 263*10°%/0.77*10° = 3.4*10°s or 39.53 days.

On every iteration of the experiment, Charlie tries to establish and distribute
entangled photons to Alice and Bob, who then transduce them to their own qubits.
Meanwhile, at each iteration, Alice and Bob are executing their respective quantum
circuits anew. After we wait for 39.5 days to get an entangled pair between Alice and
Bob, we still must perform the rest of the CNOT circuit, given we already achieved
transduction on both nodes. The fidelity of CNOT is still 0.57, which will translate in
overall CNOT success rate of once every 39.53 / 0.57 = 69.35 days. The success rate is
too low for this to be a practical scheme for most purposes.

5 Future Work

Future work related to this might entail modelling of Transduction as a gate in NetSquid and
studying the effects of emerging transduction techniques in the context of distributed
quantum computing. Our current model of transduction is done by simply manipulating the
initial coupling probability of the quantum channel, resulting in most experiment trials losing
the photon and hence the simulation cannot proceed. Modelling it as a gate will circumvent
this problem and allow all runs to complete, and thus the simulator will produce results in a
reasonable time frame.

Research on the architecture of distributed systems can be another area. A potential
research question to address is whether a central entanglement service is better or a
distributed entanglement service with entanglement swapping in the middle. Of course,
these are big questions, and the answers depend on various system parameters and design
choices.

Another avenue of research might be to automatically extract out noise models for lon Traps
or other technologies in Qiskit (or any other simulator), incorporate them in NetSquid, and
compare the results with superconducting devices. This can be generalized, and any two
device technologies can be compared to study the advantages and disadvantages over one
another on specific algorithms.

6 References
[1] Mohammad Mirhosseini et al., Quantum transduction of optical photons from a
superconducting qubit

[2] Stephanie Wehner et al., NetSquid, a discrete-event simulation platform for quantum networks

[3] Abraham Asfaw, Luciano Bello, Yael Ben-Haim, Sergey Bravyi, Nicholas Bronn, Lauren Capelluto,
Almudena Carrera Vazquez, Jack Ceroni, Richard Chen, Albert Frisch, Jay Gambetta, Shelly Garion,
Leron Gil, Salvador De La Puente Gonzalez, Francis Harkins, Takashi Imamichi, David McKay,
Antonio Mezzacapo, Zlatko Minev, Ramis Movassagh, Giacomo Nannicni, Paul Nation, Anna Phan,
Marco Pistoia, Arthur Rattew, Joachim Schaefer, Javad Shabani, John Smolin, Kristan Temme,
Madeleine Tod, Stephen Wood, James Wootton. Qiskit

[4] Daniel Gottesman et al., Quantum teleportation is a universal computational primitive

[5] Tzvetan S. Metodi, Arvin |. Faruque, Frederic T. Chong, Quantum Computing for Computer
Architects: Second Edition 2011, Morgan and Claypool Publishers

[6] Linran Fan et al, Superconducting cavity electro-optics: a platform for coherent photon
conversion between superconducting and photonic circuits, Science Advances 17 Aug 2018

