
Computer Science Department

Technical Report Number: NU-CS-2020-15

December, 2020

A Simulator for Distributed Quantum Computing

Gaurav Chaudhary

Abstract

This project presents a simulator for distributed quantum computing by leveraging existing
quantum hardware and simulators to model a system of interconnected quantum computers.
Two well-known quantum computing simulators are used to achieve this: Qiskit and NetSquid.

Qiskit by IBM is a quantum information processing simulator with approximate models for
actual hardware by IBM and other companies. Qiskit supports two popular quantum
computing technologies, superconducting transmon qubits and ion traps, which make it an

ideal vehicle to model quantum processors. NetSquid is developed by QuTech at TUDelft.
NetSquid is a network simulator with support for network nodes as noisy quantum processors.
The work in this MS project leverages Qiskit to model quantum processors based on actual

hardware and uses those as nodes in a network simulation in NetSquid. By doing this, this

work aims to faithfully simulate distributed quantum computation.

Keywords

Quantum Computing, Distributed Quantum Computing, Quantum Networks, IBM Qiskit,

NetSquid

This work was partially supported by NSF award CCF-1453853.

MS Project

A Simulator for Distributed Quantum
Computing

By: Gaurav Chaudhary

Advisor: Professor Nikos Hardavellas

Committee: Professor Nikos Hardavellas (Chair), Professor Prem Kumar, Professor Randall Berry

Department of Computer Science, Department of Electrical and Computer Engineering,

Northwestern University

Contents
1 Abstract 3

2 Introduction 4

3 Materials and Methods 5

3.1 Qiskit 5

3.1.1 Basis Gate set for ibmq_16_melbourne 6

3.1.2 Error Models in Device Backend 7

3.2 NetSquid 9

3.2.1 Quantum Processor 9

3.2.2 Quantum Channel 10

3.2.3 Quantum Network 10

3.2.4 Error Models in NetSquid 11

3.3 Architecture 13

3.3.1 Step 1 – Extracting the Noise Model from Qiskit 13

3.3.2 Step 2 – Recreating the Noise Model in NetSquid 17

3.3.3 Step 3 – Declaring a Quantum Processor with the Noise Model 20

3.3.4 Step 4 – Protocol with Noisy Processors 21

4 Port Validation and Discussion 22

4.1 CNOT 22

4.2 CNOT Chain 23

4.3 Teleportation 24

4.4 Distributed CNOT simulation 25

5 Future Work 28

6 References 29

1 Abstract

This project presents a simulator for distributed quantum computing by leveraging existing

quantum hardware and simulators to model a system of interconnected quantum computers.
Two well-known quantum computing simulators are used to achieve this: Qiskit and NetSquid.
Qiskit by IBM is a quantum information processing simulator with approximate models for

actual hardware by IBM and other companies. Qiskit supports two popular quantum
computing technologies, superconducting transmon qubits and ion traps, which make it an
ideal vehicle to model quantum processors. NetSquid is developed by QuTech at TUDelft.

NetSquid is a network simulator with support for network nodes as noisy quantum processors.
The work in this MS project leverages Qiskit to model quantum processors based on actual
hardware and uses those as nodes in a network simulation in NetSquid. By doing this, this

work aims to faithfully simulate distributed quantum computation.

2 Introduction

In the NISQ (Noisy Intermediate-Scale Quantum Computing) era, quantum computers are

limited in the size of computations they can perform. It is challenging to increase the number
of physical qubits on a single chip. One of the major contributors of this is the difficulty of
maintaining a quantum state and preventing its interaction with the environment. To counter

the problem of thermal coupling and interaction with the environment, quantum computers
are cooled just above absolute zero using a dilution refrigerator. As a quantum computer
scales up, the cost of logistics, like cooling, rises exponentially. The cost of maintaining an

intermediate-scale quantum computer is enormous due to this. The largest quantum

computer that exists at the writing of this report is around 72-qubits.

To get around the problem of scaling up a single quantum computer, researchers have
proposed distributed quantum computers, which can leverage multiple intermediate-scale

quantum computers connected in a network to create one big logical quantum computer.
Distributed quantum computing is a broad area of research. There are architectural and
system-level trade-offs which need to be studied extensively: hardware technologies, the

distance between the nodes, entanglement generation and qubit transmission to name a few.
Since distributed quantum computers are in a nascent stage, a high-fidelity simulator is

needed to explore the design space.

Existing quantum simulators can simulate one aspect of the system well. For instance, Qiskit by

IBM is good at simulating quantum information processors. On the other hand, NetSquid by
QuTech is good at simulating quantum networks. This work aims to leverage the strengths of
Qiskit and NetSquid to create a new framework which can simulate distributed quantum
algorithms with high fidelity. The aim is to create a framework to help study system

architecture and algorithms and to uncover implications of important design decisions.

3 Materials and Methods

This project leverages features from two well-known quantum computing simulators: Qiskit by IBM,
and NetSquid by TUDelft. The requirement for a faithful distributed quantum computing simulator
is that it should be capable of simulating all the aspects of the system with appropriate error

models. Broadly, it should be able to simulate the following:

1. Quantum Processor or the nodes where the actual computation is performed
2. Quantum Information Channels or the physical link via which the quantum information

flows

3. Quantum Memories or the physical devices used to store quantum information
4. The interaction of all these components in a system and the errors accumulated due to

factors like latencies and stalling

The choice of two-component simulators: Qiskit and NetSquid is not a random one. The following

subsections describe the relevant functionality of Qiskit and NetSquid in detail.

3.1 Qiskit

Qiskit can be used to automatically generate a basic noise model for an IBMQ hardware devices and

use this model to perform simulations of Quantum Circuits to study the effects of errors which

occur on real noisy devices.

These automatic models are only an approximation of the real errors that occur on actual devices,
due to the fact that they must be built from a limited set of input parameters related to average

error rates on gates.

The model of an actual machine is generated using the calibration information reported in the

BackendProperties of a device which include:

1. T1-T2 constants for relaxation time
2. Readout error probabilities for each qubit

3. Gate errors for each basis gate on each qubit and allowed combinations for 2-qubit gates

4. Gate lengths of each basis gate on each qubit

The code to generate a basic device model of ibmq_16_melbourne (a 16-qubit quantum computer

by IBM) is given in Figure 3-1.

The provider is the user account created on IBM Qiskit website. The get_backend call to

ibmq_16_melbourne specifies the actual hardware device for which the simulation needs to be
performed. The ibmq_16_melbourne can be replaced with any other backend supported by Qiskit.
For instance, it can also be aqt_innusbruck which is a 6-qubit Trapped Ion quantum computer by

AQT Technologies. This is another major advantage of Qiskit; it supports a wide variety of
technologies to act as possible backends.

The from_backend call extracts out the noise model from a given backend, that is, the 4 points

mentioned above. This is used as an argument into the execute function.

The coupling map describes the microarchitecture of the underlying hardware. It basically specifies

which qubits are closer to each other in the hardware. Consequently, this provides a constraint list

to perform two-qubit gates on the physical qubits.

Figure 3-1

The basis gate set in a noise model is a collection of the most basic gates which form the complete

gate set for a quantum processor.

3.1.1 Basis Gate set for ibmq_16_melbourne
● Identity Gate - I gate

● U1 gate – Rotation along the Z axis

● U2 gate –

● U3 gate –

● CX – Controlled X gate

● Measurement gate

All the gates in the system are modelled by some combination of these gates. The errors

provided in the backend properties are given in terms of these basis gates.

Modelling of some common gates with basis gates in Qiskit.

The following sub-section provides details on the error models provided by a given backend.

3.1.2 Error Models in Device Backend

3.1.2.1 T1-T2 constants
T1-T2 constants together form the thermal relaxation error for a given qubit. This is
analogous to the decoherence model in quantum mechanics, where a quantum system

couples with its environment and loses the coherence of its state. This process appears to
be non-unitary if the system is studied in isolation but the overall system + environment

comes out to be unitary.

T1 is known as the amplitude damping time and T2 is known as the dephasing time.

These can be extracted for a given backend by use of the following API

Basis Gate Common Gate

 U2 H

 U3 X

 U1 Z

 U3 Y

 U1 S

 CX CX

 U1(1)-->CX-->U1(1) CY

 U2(1)-->CX-->U2(1) CZ

 Measure Measure

3.1.2.2 Readout Errors

Readout errors for a backend are provided as conditional probabilities. For an N-qubit

readout error, the probabilities are given as:

Where P(j|m) is the probability of recording a measurement outcome of m as the value j.

For one qubit, the representation is as follows:

Readout errors can be extracted from a given backend by using the following API

Which returns the readout errors in the following format for each qubit.

{P(1|0), P(0|1)}� probabilities for measuring an orthogonal state

3.1.2.3 Gate Errors and Gate Lengths
Gate errors in Qiskit refer to as the depolarization errors when a gate is applied to a

particular qubit. Gate Length refers to the latency (ns) of the gate being applied on a

particular qubit.

Gate Errors and Gate Lengths can be extracted from the device backend by the following

API:

This call returns the gate errors and length values in the following format � A list of tuples

(name, qubits, time, error) for all physically possible combinations of qubits.

3.2 NetSquid

NetSquid is a quantum network simulation package for python. NetSquid incorporates all the
major components to faithfully simulate a quantum network. It does so by integrating a

quantum information processing simulator with an event-based classical network simulator.
NetSquid is very well suited to simulate distributed quantum systems, given that an actual
hardware processor is approximated as a quantum processor. NetSquid defines the

abstraction of a quantum processor to be used as a node in the network. It also defines
quantum/classical channels for quantum/classical information communication. It also
enables the user to incorporate custom noise models to all the components. NetSquid has

support for writing hardware-agnostic code by the quantum program abstraction.
Consequently, whenever the underlying hardware technology is changed, no code rewrite is

required. These components of NetSquid are described in detail in the following sub-sections.

3.2.1 Quantum Processor
A Quantum Processor extends the base class Quantum Memory and adds the functionality

of quantum computation to the memory. Instructions on a Quantum Processor can be
executed via a Quantum Program or directly by using the execute command. A Quantum

Processor takes as input all the possible physical instructions that it can execute.

Here is an example declaration of a quantum processor:

Here, the name of the processor is “TestQPD” with 4 qubits in total. The processor has a
DepolarNoise associated with all the qubits. Topology means the qubits that support the

given instruction. The quantum_noise_model argument specifies the noise applied to that

particular instruction. Duration specifies the time (ns) it takes to complete that instruction.

The example TestQPD processor supports the following instructions:

● INIT: Initializes the qubits to state |0>. All qubits support it (no topology input)
● X: BitFlip gate. Only qubits 1,3 and 3 support it with a relaxation error

● CNOT: Can only be performed between qubits (2,1) and (1,3)

● Measure: Applicable on all qubits

Now, instructions can be executed directly or via a quantum program:

● Directly executing instructions with an execute instruction call:

Example​�​ qmemory.execute_instruction(instr.INSTR_INIT,[0],physical=True)

● Executing via a quantum program:

o Here, CustomQProgram extends the base class QuantumProgram

o The program method needs to be overwritten with the user program

o yield self.run() waits for the body of the program to finish (instructions can be

executed in parallel or sequential order)

3.2.2 Quantum Channel

Netsquid.components.qchanel defines a quantum channel which is used to transmit

quantum information. Now, gates can also be thought of as a quantum channel in time
rather than space. This has support for both types of transmission. This API declares a
one-way quantum channel capable of transmitting qubits with a specified delay, noise and

loss.

As an example,

Here, qchannel_c2a is a quantum channel from c to a with a standard FibreDelayModel and

a specific FibreLossModel.

Similarly, NetSquid also has support for a classical channel capable of transmitting classical

information with a given noise, loss and delay.

The above discussion brings us to the topic of a Quantum Network supported by NetSquid.

This is where all the above components are integrated.

3.2.3 Quantum Network

Quantum Network is a component to help create and manage a network of nodes and

connections.

As an example,

Here, first a network is declared with the name “test_network”. Two nodes, carl and evan
are added as nodes in the network. Carl has a QuantumMemory and evan has a

QuantumProcessor included.

Connection of two nodes within a network can be done simply as follows:

Here, alice and bob are connected via a quantum channel and the connection is a part of

the network.

Quantum memories, quantum processors and quantum/classical channels can have custom errors

associated with them. The following subsection details the Error classes provided by NetSquid.

3.2.4 Error Models in NetSquid

Figure 3-2

As shown in Figure 3-2, NetSquid supports Classical, Quantum as well as Delay models for

Fibres.

The QuantumErrorModel class has three derived classes: FibreLossModel,

DepolarNoiseModel and T1T2NoiseModel.

3.2.4.1 FibreLossModel

Describes a model for exponential photon loss on fibre optic channels.

Where,

● p_loss_init: The initial probability of losing a photon when it enters the channel
● p_loss_length: The photon survival probability per unit length (dB/km)
● rng: Random number generator to use

This error model can be passed to a quantum channel to make the connection noisy and
realistic.

3.2.4.2 DepolarNoiseModel

This model applies depolarization noise to the qubits.

Where,

● Depolar_rate: The probability that the qubit will depolarize with time.

● time_independent: If false, then this is the exponential depolarizing rate per unit

time (Hz). If true, this is the probability.

3.2.4.3 T1T2NoiseModel
This is a commonly used phenomenological noise model based on T1 T2 times. This is

more generally referred to as the decoherence model.

Where,

● T1: Time constant of exponential amplitude damping.

● T2: Time constant of exponential dephasing component.

3.3 Architecture
Now that the relevant features of Qiskit and NetSquid are covered, let’s take a look at how these

features can be used to perform a truly distributed quantum computing simulation.

The figure below depicts the steps we take to prepare NetSquid for distributed quantum computing

simulations.

Step 1: Extract out the error model of a given backend in Qiskit.

Step 2: Recreate the Error model in NetSquid.

Step 3: Use the Error Model to declare noisy QuantumProcessors in NetSquid.

Step 4: Write the Node Protocol with Noisy Processors.

3.3.1 Step 1 – Extracting the Noise Model from Qiskit
As discussed in section 3.2, Qiskit provides a set of APIs to extract out a noise model from a

given backend.

The following is the common code excerpt that applies to all the code snippets after this.

3.3.1.1 Readout Errors for ibmq_16_melbourne

Code to extract out the readout error values in Qiskit:

Resulting error values of the ibmq_16_melbourne:

3.3.1.2 Thermal Relaxation Values for ibmq_16_melbourne

Code to extract out the Thermal Relaxation values from Qiskit:

Resulting error values for ibmq_16_melbourne:

3.3.1.3 Depolar gate errors and gate lengths

Code to extract out the Gate Errors and Gate Lengths from Qiskit:

Resulting Error and Gate Lengths for ibmq_16_melbourne:

3.3.2 Step 2 – Recreating the Noise Model in NetSquid
This section describes the details of porting a given noise model to NetSquid. This contains

details on how to port the readout errors, thermal relaxation errors, gate errors and gate

lengths to NetSquid.

The following code is common to all the subsequent sections:

3.3.2.1 Porting Readout Errors
Readout errors are measurement errors. Once a qubit is measured, the error is applied on

the classical outcome with some probability.

Here is the code to port the readout errors from Qiskit to NetSquid:

● physical_I is just a python list to contain all the physical instructions that Melbourne
supports.

● MeasureNoiseModel is a custom class created specifically for this port. Here are the
details.

The error operation defines how the measurement error in applied in NetSquid.

Note that this is a pessimistic approximation of the error in Qiskit. The maximum of
P[1|0] and P[0|1] is taken and the outcome is flipped with that probability. The for
loop is present to take care of any qubits in shared or entangled states.

● Measure Noise is applied whenever the physical instruction INSTR_MEASURE is
called on the qubit specified by the topology.

● Note that readout_error_values is a Qiskit construct and PhysicalInstruction is a

NetSquid construct.

3.3.2.2 Porting Thermal Relaxation Errors
As discussed before, thermal relaxation errors define the decoherence model of quantum

systems.

The code to port the thermal relaxation from Qiskit to NetSquid is given below:

● Thermal_relaxation_values is a Qiskit construct giving the T1 T2 values of
Melbourne. The values are multiplied by 1000 because Qiskit provides the values

in us whereas NetSquid expects the values in ns.
● relax_error is NetSquid T1T2NoiseModel, adding the relax errors for all the qubits

concatenates the noise model and forms a single decoherence model for

ibmq_16_melbourne.

● relax_error can be applied to quantum memory as follows:

Here, a 15-qubit quantum processor is declared in NetSquid with relax_error

(decoherence model for Melbourne) as a memory_noise_model.

A limitation of NetSquid’s T1T2NoiseModel is that it does not support a

non-unitary model of decoherence (when T1<T2). To get around this problem, a

custom decoherence model is written. The details are as follows:

Here, Choi and Kraus are Qiskit’s constructs and apply_kraus_error is a custom

Kraus model written for NetSquid.

● The Kraus matrices given by k.data are converted into a list of operators.
● The multi_operate function does the following operation which is similar

to the definition of Kraus’ evolution model:

o For a given list of operators ​O​I​ ​and a quantum state ρ, the

evolution is defined as:

3.3.2.3 Porting Gate Errors and Gate Lengths to NetSquid

Gate errors are the depolarization errors when a specific gate is applied to a specific

qubit. Gate lengths represent the latency of the application of a gate on a specific qubit.

The code to port the gate errors and lengths from Qiskit to NetSquid is given below:

The mapping of the basis gates of Qiskit to the gates used in NetSquid is given below:

After doing these steps, a complete list of noisy instructions (physical_I) and a complete
decoherence model (relax_error) for the quantum processor is available. The next step is to declare

a quantum processor with the given error model in NetSquid.

Basis Gate in Qiskit NetSquid Gate

 U2 H

 U3 X

 U1 Z

 U3 Y

 U1 S

 CX CX

 U1(1)-->CX-->U1(1) CY

 U2(1)-->CX-->U2(1) CZ

 Measure Measure

3.3.3 Step 3 – Declaring a Quantum Processor with the Noise Model

The create_processor function creates a quantum processor with physical_I instructions
and relax_error decoherence model. Note that relax_error and physical_I are globals in this

piece of code.

3.3.4 Step 4 – Protocol with Noisy Processors
The following code shows a sample network using the noisy processors as nodes.

Here, two nodes (Alice and Bob) are created using the create_processor function. A
network called Teleportation network is declared and the quantum processors are added to

the network.

For instance, the following code shows the protocol that Alice follows:

The protocol for the Node Alice can be defined as follows:

This completes the port of the noise model from Qiskit to NetSquid. The following section describes

our validation of the port and discusses important observations from the results.

4 Port Validation and Discussion
This section details the experimental validation of porting the noise model from Qiskit to

NetSquid. The validation of the port is performed by running three tests both on Qiskit and

NetSquid and then comparing the results.

The three test cases used are CNOT, CNOT_Chain and Teleportation.

The following sub-sections list the details of each.

4.1 CNOT

The figure shows the schematic of the circuit. Qubit q0​0 is initialized in the |1> state and a CNOT is
performed between q0​0 and q0​1​. After that, the two qubits are measured, and the results of the

measurements are recorded. This entire process is repeated 1000 times and the results are
aggregated. A successful run results in measuring 11. Due to errors in the noisy quantum processor,

other results will also be recorded with some probability.

The following figure presents the average probability and 95% confidence interval of observing each
of the possible measurement outcomes in Qiskit and our modified version of NetSquid when
measuring qubits q00, q01:

As clear from the figure, the port successfully recreates the results on small circuits consisting of

one or two qubits.

● Success probability with 95% Confidence Interval in Qiskit = 0.788 ± 0.0122

● Success probability with 95% Confidence Interval in NetSquid = 0.779 ± 0.0124

4.2 CNOT Chain

The figure shows the schematic of the CNOT chain circuit. Qubit q0​0 is initialized in the |1>
state and a series of CNOT gates are performed as shown. In the end, qubits q0​0 and q0​4 are
measured. This process is repeated 1000 times and the average rate of success (q0​0​, q0​4

measurement outcome 11) is recorded for both Qiskit and NetSquid.

Here is the distribution of measurement for qubits q0​0​, q0​4​:

As shown in the chart, the success rate of Qiskit and NetSquid are very close (within 0.1%

for the “11” case). This shows the port is successful for circuits with high latencies and a

large number of gates spanning multiple qubits.

● Success probability with 95% Confidence Interval in Qiskit = 0.731 ± 0.013

● Success probability with 95% Confidence Interval in NetSquid = 0.732 ± 0.013

4.3 Teleportation

The circuit shown above is a teleportation circuit. Qubit q0​0 is prepared in the |1> state.
Then, qubits q0​1 and q0​2 are entangled. Maximally entangling q0​1​, q0​2 is not part of the
teleportation protocol; we do it simply to place these qubits in a maximally entangled initial

state before they participate in the teleportation of q0​0 to q0​2​. Subsequently, teleportation
is performed, where the state of qubit q0​0 is teleported to qubit q0​2​. Lastly, the qubit q0​2 is
measured. This process is repeated 1000 times and the rate of success (q0​2 measurement

outcome 1) is recorded.

The following is the comparison of the experimental results in Qiskit and our modified
version of NetSquid:

The chart above shows that the success rates are very close (within 0.3%). This proves that
the port is successfully recreating the results even when maximally entangled states are

involved in the computation.

The above three results prove that the port is successful and the quantum processors in

NetSquid are behaving as if they were ibmq_16_mebourne.

● Success probability with 95% Confidence Interval in Qiskit = 0.82 ± 0.0115

● Success probability with 95% Confidence Interval in NetSquid = 0.823 ± 0.0114

4.4 Distributed CNOT simulation
To demonstrate the usefulness of the port, a simulation of a distributed CNOT gate is

presented in this section.

Figure 4-1

Figure 4-1 shows the network diagram of a distributed CNOT computation.

● Alice and Bob are noisy quantum processors based on the ibmq_16_melbourne noise
model.

● Charlie is an entanglement generation source, generating an entangled pair of
photons with an entanglement rate f (f = 4e4/node_distance) and fidelity 0.95, where
node_distance is the distance in km between Alice and Bob. Charlie is assumed to be

located exactly in the middle of the distance between Alice and Bob.
● The connections shown in orange are quantum connections and the connection

shown in blue is a 2-bit classical connection.

● The error model of Quantum connections is described with a default
FibreDelayModel() and a default FibreLossModel() available in NetSquid.

● The error on the classical connection is described by a default FibreDelayModel().

● Note that this circuit assumes perfect transduction, i.e., the photons sent by Carlie are

transduced to a superconducting qubit perfectly.

The protocol of Distributed CNOT is as follows:

● Charlie generates an entangled pair every node_distance/4e4 seconds and sends one
photon to Alice and one to Bob via the quantum channels shown in orange.

● Alice prepares a qubit in |1> state and performs a CNOT and Hadamard on the
received qubit (part of teleportation).

● After those operations are finished, Alice measures the prepared qubit and the
received qubit. Alice sends the 2-bit measurement results over to Bob via a classical

connection.
● Bob waits for the photon from Charlie and the 2-bit classical data from Alice. Once bob

has received both, Bob performs the correction protocol on the received qubit (CX and

CZ based on classical data as per the teleportation protocol).
● Once bob has performed the correction, Bob performs a CNOT between the corrected

qubit and another qubit (position 1) in the |0> state.

● Finally, the target qubit of the CNOT at Bob’s side is measured and the results are
recorded.

● Success is defined by measurement outcome 1 since the control should have been in

|1> state and target in |0> state.
● The simulation is run for 1000 repetitions and the fidelity is plotted as a function of the

distance between Alice and Bob, with Charlie exactly in the middle.

Here are the results of the simulation:

These numbers reflect the fidelity of a distributed CNOT in the case of a perfect

Transduction. Taking transduction into account will render the distributed CNOT
impractical in our setting (superconducting nodes connected by a photon-based
quantum channel) due to the following reasons.

● The efficiency of transduction between superconducting transmons and photons is
0.88*10​-5​ [1].

● The entanglement generation and distribution rate to two nodes that are 10 Km apart

is 4000 entangled photon pairs per second, which means that the entangling source
will generate a successful entanglement once every (1/0.95) * 1/4000 = 263us (0.95 is
the fidelity of entanglement generation).

● Now, since the transduction is performed on both Alice’s and Bob’s side, the
probability of a successful transduction of an entangled pair is (0.88*10​-5​)​2​=0.77*10​-10​.
Which means that a successful entanglement of superconducting qubits at Alice and

Bob is generated every 263*10​-6​/0.77*10​-10​ = 3.4*10​6​s or 39.53 days.
● On every iteration of the experiment, Charlie tries to establish and distribute

entangled photons to Alice and Bob, who then transduce them to their own qubits.

Meanwhile, at each iteration, Alice and Bob are executing their respective quantum
circuits anew. After we wait for 39.5 days to get an entangled pair between Alice and
Bob, we still must perform the rest of the CNOT circuit, given we already achieved
transduction on both nodes. The fidelity of CNOT is still 0.57, which will translate in

overall CNOT success rate of once every 39.53 / 0.57 = 69.35 days. The success rate is

too low for this to be a practical scheme for most purposes.

5 Future Work

Future work related to this might entail modelling of Transduction as a gate in NetSquid and

studying the effects of emerging transduction techniques in the context of distributed
quantum computing. Our current model of transduction is done by simply manipulating the
initial coupling probability of the quantum channel, resulting in most experiment trials losing

the photon and hence the simulation cannot proceed. Modelling it as a gate will circumvent
this problem and allow all runs to complete, and thus the simulator will produce results in a

reasonable time frame.

Research on the architecture of distributed systems can be another area. A potential

research question to address is whether a central entanglement service is better or a
distributed entanglement service with entanglement swapping in the middle. Of course,
these are big questions, and the answers depend on various system parameters and design

choices.

Another avenue of research might be to automatically extract out noise models for Ion Traps
or other technologies in Qiskit (or any other simulator), incorporate them in NetSquid, and
compare the results with superconducting devices. This can be generalized, and any two

device technologies can be compared to study the advantages and disadvantages over one

another on specific algorithms.

6 References
[1] Mohammad Mirhosseini et al., Quantum transduction of optical photons from a

superconducting qubit

[2] Stephanie Wehner et al., NetSquid, a discrete-event simulation platform for quantum networks

[3] Abraham Asfaw, Luciano Bello, Yael Ben-Haim, Sergey Bravyi, Nicholas Bronn, Lauren Capelluto,
Almudena Carrera Vazquez, Jack Ceroni, Richard Chen, Albert Frisch, Jay Gambetta, Shelly Garion,
Leron Gil, Salvador De La Puente Gonzalez, Francis Harkins, Takashi Imamichi, David McKay,

Antonio Mezzacapo, Zlatko Minev, Ramis Movassagh, Giacomo Nannicni, Paul Nation, Anna Phan,
Marco Pistoia, Arthur Rattew, Joachim Schaefer, Javad Shabani, John Smolin, Kristan Temme,

Madeleine Tod, Stephen Wood, James Wootton. Qiskit

[4] Daniel Gottesman et al., Quantum teleportation is a universal computational primitive

[5] Tzvetan S. Metodi, Arvin I. Faruque, Frederic T. Chong, Quantum Computing for Computer

Architects: Second Edition 2011, Morgan and Claypool Publishers

[6] Linran Fan et al, Superconducting cavity electro-optics: a platform for coherent photon

conversion between superconducting and photonic circuits, Science Advances 17 Aug 2018

