
G. Tziantzioulis†, A. M. Gok†, S. M. Faisal‡, N. Hardavellas†, S. Ogrenci-Memik†, and S. Parthsarathy‡

Lazy Pipelines:
Enhancing Quality in Approximate Computing

†Department of Electrical Engineering and Computer Science
Northwestern University, Evanston, IL, USA

{georgios, amg}@u.northwestern.edu, {nikos, seda}@northwestern.edu

‡Department of Computer Science
The Ohio State University, Columbus, OH, USA

{faisal, srini}@cse.ohio-state.edu

Abstract—Approximate computing techniques based on Volt-
age Over-Scaling (VOS) can provide quadratic improvements in
power efficiency. However, voltage scaling is limited by the inher-
ent fault-tolerance of an application, thus preventing VOS
schemes from realizing their full potential. To gain further power
efficiency a reduction of the error rate experienced in a given volt-
age level is required. We propose Lazy Pipelines, a micro-architec-
tural technique that utilizes vacant cycles in a VOS functional unit
to extend execution and reduce the error rate.

Keywords — approximate computing, power efficiency, micro-
architecture

I. INTRODUCTION

Power has become a first-class design constraint [9] for
both high-end and mobile systems due to the breakdown of
Dennard’s scaling [2] and the advent of dark silicon [7]. Sev-
eral techniques to reduce power have been proposed, including
dynamic voltage and frequency scaling, near-threshold com-
puting, and sleep states. However, the impact of these tech-
niques is hampered by the traditional worst-case design
approach: as technology scaling leads to probabilistic behavior
in CMOS [1], designers add significant voltage and timing
margins [10] to overcome the environmental and process varia-
tions of the worst-case scenario, no matter how improbable this
scenario may be. The resulting highly-conservative guardbands
reduce both performance and power efficiency.

One of the most prominent techniques for reducing the
power consumption is voltage over-scaling (VOS), where the
supply voltage (Vdd) of a component is reduced below the
safety margin in an attempt to receive quadratic power savings
(Pdyn. = C×Vdd

2×f). In contrast to initial VOS schemes with
error detection and correction [3], later research identified that
allowing faults in the execution while providing acceptable
output quality (by limiting the errors to computations that can
tolerate them [4]) would allow for voltage scaling well beyond
what error-correcting techniques could afford. At the same
time, functional units (FUs) in modern computer architectures
can stay unoccupied. Tullsen et al. [12] quantify the amount of
under-utilization and suggest simultaneous hardware multi-
threading to increase utilization and boost the system’s instruc-
tion throughput.

Combining the above observations, we propose Lazy Pipe-
lines, an architecture that exploits the unutilized execution
cycles (i.e., slack) of FUs to improve computational accuracy
in VOS approximate computing architectures. Lazy Pipelines
utilize the slack of VOS FUs to prolong the computation and
reduce the number of timing errors. Our analysis shows that by
utilizing slack, we can substantially decrease the bit error rate

(BER) in the results of approximate computations. This allows
to extract further power benefits by enabling additional reduc-
tion of supply voltage, while maintaining the same level of tim-
ing errors. To the best of our knowledge, this is the first work
that exploits the slack of FUs to improve the accuracy of
approximate computations. More specifically, our contribu-
tions are:

• We propose Lazy Pipelines, a microarchitectural tech-
nique that harnesses multiple contiguous vacant execu-
tion cycles (slack) to reduce timing errors on VOS FUs.

• We analyze the impact of slack on reducing BER in a set
of FUs covering integer, logic, and FP operations.

• We evaluate the impact of Lazy Pipelines through
detailed cycle-accurate architectural simulations.

II. RELATED WORK

There is a large body of work in detecting and correcting
the timing errors that stem from VOS FUs. Ernst et al. [3] pro-
pose Razor, a technique for detecting and correcting timing
errors in a VOS circuit. Lazy Pipelines is orthogonal to Razor
and could be combined with it to reduce the number of cases
where an operation needs to be repeated due to a timing error.

Our work is related to the scheme proposed by Esmaeilza-
deh et al. [4], which is modified to exploit slack in execution to
improve output quality while reducing power. The concept of
prolonging the execution of an instruction to improve the qual-
ity of the result has been proposed in previous approximate
computing studies. Xin et al. [14] observed that specific
instructions are more likely to stress the circuit’s critical paths
and produce timing errors. To reduce the effect of re-executing
a critical instruction, either an extra cycle is allocated on them,
or they are replaced with less critical ones [8]; however, as full
accuracy is preserved they can not be directly compared with
Lazy Pipelines. Parallel to the work previously mentioned,
researchers have proposed abstractions and programming mod-
els for instrumenting and confining imprecision to fault-toler-
ant computations [11].

III. BACKGROUND

In this section we establish the needed background knowl-
edge and set down assumptions we made to design our scheme.

A. Precision Marking

To implement approximate-computing-aware hardware, a
mechanism to inform the hardware about the precision levels
of individual operations is required. Sampson et al. [11] pro-
pose a programming language framework that facilitates the
marking of data and computation with precision levels. The

precision information is conveyed to the hardware by extend-
ing the ISA with imprecise variants of existing operations.
However, adding new instructions can be difficult in a fixed
instruction-length ISA (e.g., ARM) where existing operations
occupy the majority of the available opcode space. Further-
more, including precision information in the bit encoding of an
operation hinders scaling to multiple precision-levels; to sup-
port N levels, log(N) bits per operation are required. This
approach allows for fine-grain marking, but the decoder logic
requires significant modifications and the opcode length
increases and occupies significant bitwidth from the ISA,
which may not be feasible for some ISAs.

A more flexible approach is to introduce a single marking
instruction in the ISA that marks the precision level of the sub-
sequent arithmetic instructions (see Listing 1). The arithmetic
instructions that follow a marking instruction will be issued to
the FUs at the specified precision level. Non-arithmetic instruc-
tions (e.g., ld, st) always execute accurately. This approach,
which we adopt, requires minimal changes to the decoder and
results in small code size increase when there are large regions
of same-precision instructions.

B. Relation between Vdd and Delay

We perform analog simulations to analyze the relationship
between slack and BER. Figure 1(a) presents the BER for a
VOS integer adder and the impact of slack execution cycles
after the nominal end. Figure 1(b) presents the same relation
for the logic AND operation, and is representative of the

behavior of other logic operations (OR, XOR, MOVE; omitted
due to space constrains). Figure 1(c) presents the same relation
for the floating point add operation. We observe that integer
operations eventually converge to correct results, but the FP-
add converges much slower due to its complexity.

C. Functional Unit Design

The design of a FU has a direct impact on the slack vs. BER
relationship. The most favorable FU design for Lazy Pipelines
is a combinational circuit. In such a scheme the amount of
available slack is directly applied to the whole execution, thus
maximizing the gain. The integer ALU we model is a single-
cycle combinational FU that belongs to this category. Another
FU design amenable to Lazy Pipelines is a multi-stage pipe-
lined FU without any feedback. Given enough slack, it will
eventually be free of all timing errors. The FP adder unit we
model belongs to this category.

Finally, the third kind of design includes pipelined FUs
with feedback in the circuit, and thus the current output is a
function of the previous output. The integer multiplier, FP mul-
tiplier and FP divider we model belong to this category.
Because the current output is a function of the previous output,
the output can only be read at the exact cycle it was supposed to
be generated; the output is useless even one cycle later, even at
nominal Vdd. This makes exploiting additional cycles non-triv-
ial. However, circuit designs that perform these arithmetic
operations without a feedback loop exist. While a comprehen-
sive exploration of such circuits is beyond the scope of this
paper, we model FUs in this category that have this property, by
approximating the behavior using clock division (Figure 2).

In order to exploit slack, an FU requires the input operands
to be held constant throughout the whole operation. Thus, the
FUs we model employ input buffers for their operands. These
buffers are written with new values only when a new operation
is issued to the FU.

IV. ARCHITECTURE

In this section we describe the modifications required to
incorporate Lazy Pipelines in a typical micro-architecture.

Listing 1. Assembly example with precision marking.

startImprecise ; precision_l=0b111 (0.5V)
mul r8, ip, r8
add r1, r2, r3
start Precise ; precision l=0b000 (1.2V)
cmp r2, #16
startImprecise ; precision l=0b111 (0.5V)
lsl r6, r8, #2
str r6, [r3]
...
rsb r6, r2, r3
startPrecise ; precision l=0b000 (1.2V)
add r0, r0, #4

��

���

���

���

���

���

�� �� �� �� �� �� 	�
� �� ��

��
���

��
��
�	

�
��
�

��

��
���

�
���
�
	��
�

��
�
���
�
���
�
���
�
���
�
���

��

���

���

���

���

���

�� �� �� �� ��

��
���

��
��
�	

�
��
�

��

��
���

��

���

���

���

���

���

�� �� �� �� ��

��
���

��
��
�	

�
��
�

��

��
���

Fig. 1. BER as a function of slack and Vdd for integer and fp functional units.

(a) int_add (b) logic and

(c) fpu_add

��

���

���

���

���

���

�� �� �� �� �� �� 	�

��
���

��
��
�	

�
��
�

��

��
���

�
���
�
	��
�

��
�
���
�
���
�
���
�
���
�
���

��

���

���

���

���

���

�� �� �� �� �� �� 	�
�

��
���

��
��
�	

�
��
�

��

��
���

�
���
�
	��
�

��
�
���
�
���
�
���
�
���
�
���

Fig. 2. BER as a function of slack and Vdd for integer and fp multipliers.

(a) int_mul

(b) fp_mul

A. Approximate Computing Architecture

Our base approximate computing architecture scheme
resembles the one proposed by Esmaeilzadeh et al. [4]. For
every FU in the baseline system, we add one more FU that runs
at lower Vdd and executes imprecise computations. The user
sets the precision level based on the quality requirements of the
application, and the application upon loading sets the Vdd of
the imprecise FUs to the corresponding level. The precision
marking instructions in the code simply denote which of the
two precision levels (precise, imprecise) will be used for subse-
quent arithmetic operations. In contrast to [4], the issue logic in
our scheme differentiates between the precise and imprecise
version of a FU and allows independent instruction issue and
execute.

Having a set of FUs for each precision level is preferable
over one set of adjustable-Vdd FUs because precise and impre-
cise computations are finely interleaved (Figure 3). As a result,
if a single adjustable-Vdd FU is used, it will have to perform
switches between precision levels much faster than it is possi-
ble to do. Switching and stabilizing the Vdd of a unit takes 10’s
to 100’s of cycles [6], and would result in a significant perfor-
mance degradation, eliminating any potential power benefits.
For our work we assume two levels of precision for all FUs.
However, this scheme can be extended to multiple levels.

B. Vacant Cycles and Lazy Pipelines

A Lazy Pipeline exploits the naturally occurring under-uti-
lization of FUs to extend execution, thus reducing the BER in
the result. Despite substantive effort to maximize FU utiliza-
tion in modern processors (out-of-order execution, hyper-
threading) there are still vacant cycles in FUs. The under-utili-
zation further increases in architectures such as the one pro-
posed by Esmaeilzadeh et al. [4], where additional FUs are
introduced to allow for multiple precision levels. With Lazy
Pipelines we present an extension of the out-of-order micro-
architecture to exploit this phenomenon for improving output
quality. This is achieved by allowing operations to continue
execution after the nominal end cycle until another operation is
issued to the occupied FU. This slack allows signals that
missed timing to correctly propagate through the circuit, thus
improving output correctness. Section VI discusses the rela-
tionship of slack vs. BER in more detail.

Lazy Pipelines do not change the issue time of an opera-
tions, but exploit the slack that naturally occurs during runtime
due to dependencies and memory accesses. In the base archi-
tecture, the writeback (WB) occurs exactly after the nominal
execution cycles have passed. In Lazy Pipelines, however, the
WB of the output is delayed past the nominal execution time,
until sufficient vacant cycles are utilized to obtain the correct

result for that voltage level, or until another instruction is ready
to issue to the same FU, whichever happens first. In both cases
the operation is evicted. We call this delayed WB “Lazy Write-
back” (LWB). LWB utilizes slack and probably results in lower
BER. While the operation executes on the FU, it is possible that
its output is required by another operation. In the base architec-
ture, the value will be communicated through the forwarding
logic. Forwarding can only occur after the nominal execution
cycles have passed, but before the operation reaches the write-
back stage. In Lazy Pipelines, forwarding can occur after nom-
inal execution cycles have passed, until an eviction occurs,
which is a larger window of time. If the output is used by
another operation through forwarding, it will be calculated uti-
lizing slack, thus having a probably lower BER than the base
architecture. We call this improved forwarding method “Lazy
Forwarding” (LFW). Lazy Pipelines implement support for
these two techniques: Lazy Forwarding and Lazy Write-back.

If the FU is allowed to continue the execution of Operation
1 after t1, later outputs will have lower BER. But in the base
architecture, only the output at t1 would be used by all future
reads, resulting in higher BER. In Lazy Pipelines, reads at t2
and t3 will read the output values of the FU at t2 and t3 through
the use of LFW. On the other hand, reads at t5 and t6 would
read the value at t4 through LWB. The slack utilized by Lazy
Pipelines for LFW is indicated as S_LWF_1 for t2 and
S_LFW_2 for t3 in Figure 4. All LWB cases will utilize the
same slack, indicated as S_LWB.

The architectural changes required to support Lazy Pipe-
lines are as follows:

1) Decode Stage: Since our precision marking is done
through specific marking instructions, the decoder stage needs
to keep track of the current precision level by having a log(N)-
bits register (see Section III-A), and then pass this information
to pipeline registers.

2) Datapath Pipeline Registers: They require an additional
log(N) bits for precision level information, and 1 bit per impre-
cise FU to mask its Write Enable (see LWB below)

3) Issue Logic: Should support additional FUs with differ-
ent precision levels. A 2-bit register per FU keeps track of the
status of imprecise FUs (occupied, free, freeOnDemand).

4) LWB: It is possible that multiple FUs may want to write
their outputs to registers at the same time, but this issue is
already addressed in most modern architectures through the
OoO execution. A LWB is not done immediately after the nom-
inal execution cycles have passed, but delayed until an eviction
occurs. This can be done by using a 1-bit WB masking signal
per imprecise FU.

��
����
����
����
����
����
����
����
����
����

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
��

	

���

���

��
��
�

�

�������
�

������������	���

������������	���

� !"�
��	����

� !"�
�������

� !"�
�������

�
���������	���

�
���������	���

�
��������	����

�
��������	����

Fig. 3. Region size CDF. Legend key: <app> <FU>_<precise/imprecise i/p>

Op2 Op1

t0 t1 t2 t3 t4 t5 t6

S_LWB

S_LFW_1

S_LFW_2

Time

Fig. 4. Lazy Forwarding and Lazy Writeback.

5) LFW: Most modern architectures already come with for-
warding mechanisms. The only changes required for LFW sup-
port are limited to the issue/select logic that keeps the states of
the FUs. Thus, LFW can be requested (by issuing the appropri-
ate control signals) from an occupied FU any time between its
nominal execution end, and its eviction.

V. METHODOLOGY

We extract the relationship between slack and BER for dif-
ferent types of FUs through analog simulation. We fully syn-
thesized the integer and floating point FUs of an OpenSPARC
T1 core using Synopsys Design Compiler and the SAED 90nm
standard cell library. We simulate all modules using Synopsys
VCS and HSIM+ tools with the SPICE-level models of stan-
dard cells.

Using semi-randomly generated operand values we collect
statistics for the BER-slack-power trade-off. Based on the col-
lected data we create a simple model for computing the total
power consumption for the execution of a Lazy operation. We
estimate the total power consumption as follows: First, to com-
pute the static power consumption we calculate the maximum
static power consumption () of the FU assuming the entire
circuit is idle. Based on that, the static power consumption for
slack cycle n is given by where

 is the BER at cycle n. This equation captures the con-
tribution to the static power consumption coming from the
parts of the circuit that are no longer switching. The dynamic
power consumption is proportional to the switching activity of
the circuit. If is the power consumption of the instruc-
tion at nominal Vdd, then the dynamic power consumption is
computed based on the additional correct bits of each cycle,

.

To evaluate the BER and power consumption in real work-
loads when using Lazy Pipelines, we extend the ISA with pre-
cision marking instructions and model the extended ISA in the
GEM5 simulator, along with the functionality to support LFW
and LWB. To emulate the errors in computations we incorpo-
rate in GEM5 a fault injection library that implements the b-
HiVE error models [13]. We evaluate our design on a simulated
single-core processor running at 2GHz with Fetch, Decode and
Rename width of 3, Issue and Commit width of 8, IQ Entry size
of 32 and ROB size of 40. To calculate the power consumption
of the functional units in our proposed scheme and in the base
architecture we use McPat v1.3. We model Low Stand-by Tran-
sistors (LSTP) at 32nm and 340 Kelvin, with a nominal voltage
of 1.2V. We also evaluated designs with power-gated FUs, but
power-gating offers negligible benefits due to the low static
power of LSTP transistors. To obtain the final power values we
post-process McPat’s estimates through the BER-power-slack
relationship described above. Extended execution is limited to

the point that no additional quality benefit can be harvested;
e.g., after one cycle for logic operations.

We evaluate Lazy Pipelines using JPEG and ADPCM from
the mediabench benchmark suite and SOR from the scimark2
benchmark suite. All applications were compiled using GCC
v4.7.3 at -O3 optimization level targeting the ARM ISA. After
compilation, we manually identify and mark the imprecise
regions in the assembly listing. Marking can be automated
using a compiler without much overhead and we are currently
developing a version of LLVM for that purpose.

VI. EXPERIMENTAL RESULTS

A. Slack Distribution

To demonstrate the potential of utilizing Lazy Pipelines in
approximate computing designs we collect for all imprecise
instructions of our test applications the available slack that
could be used to extend the execution of each instruction.
Figure 5 presents the CDF of the available slack for each type
of imprecise FU for each application. Our results show that for
all three applications and utilized FUs there exist more than
10% of imprecise instructions that have at least 1 cycle of
slack. Figure 6 collects all the imprecise instruction uses, i.e.,
the reads of the imprecise instruction’s output by another
instruction, and categorizes them based on whether the value
was read through LFW, or LWB, or the value read was pro-
duced at exactly the nominal end of the producing imprecise
instruction (i.e., used no slack). The figure indicates that the
potential for LWB and LFW is largely application dependent.

B. Impact of LFW and LWB to Bit Error Rate

Through simulations using our modified cycle-accurate
simulator (Section V) we quantify the BER reduction that slack
utilization provides for a range of different voltage levels. Fig-
ures 7, 8, and 9 present the BER for operations that could ben-
efit from slack (i.e., operations with zero slack at Figure 6 are
excluded). Figure 7 presents the BER for the integer ALU

Ps
max

Ps n() Ps
max

1 BER n 1–()–()×=
BER n()

Pd
nominal

Pd n() Pd
nominal

1 BER n()–() 1 BER n 1–()–()–[]×=

��
����
����
����
����
����
����
����
����
��$�
��

�� �� ��� ��� ��� ���

��
��
��
���

��
�	

�
��
�
��
��

��	���	�	�����

���%�����	�

�����%�����	�

 !"%
������

 !"%
���	��

���%����	��

Fig. 5. CDF of slack after nominal end of execution for various FU types. Fig. 6. Breakdown of imprecise instruction uses (i.e., reads of the imprecise
instruction’s output by another instruction).

�&�

��&�

��&�

��&�

'�&�

	��&�

(�����
(�
���
(����� ������� ���
���

����� ������ 	
��

��
��
��
��
��
��
��
�	�

��
��

��	
��

�
� �
�	����� ���� ����

���

���

����

����

����

����

���� ���� ��	� ��
� ���� �� ���� ����

��
���

��
��
�	

�
��
��
�	

��

��	�

������

�
����� ������� �
����� �������

Fig. 7. BER reduction due to LFW and LWB in intALU operations (JPEG).

operations of the JPEG application. In the base approximate
computing architecture we see that errors occur even up to a
supply voltage of 1V. However, utilizing the available slack
through Lazy Pipelines achieves a 0% BER for the affected
operations at a supply voltage as low as 0.7V. Moreover, even
at voltage levels below 0.7V the Lazy architecture provides
significant BER reduction.

A similar behavior is observed for the ADPCM imprecise
integer operations that utilize slack (see Figure 8). However, as
the amount of slack is smaller, we observe smaller BER reduc-
tions than the ones observed at JPEG. Finally, Figure 9 presents
the BER reduction for SOR’s floating point additions.

In all figures above we see that LFW provides consistently
higher BER reduction compared to LWB. This counter-intui-
tive result can be understood by examining the CDF of the
slack for each one of the two techniques. In Figure 10(a) and
(b) we observe that LFW predominantly occurs in operations
that exhibit a larger slack (i.e., more vacant cycles), whereas
LWB occurs in cases where the operation is evicted from the
FU shortly after the nominal end of execution.

C. Overall Quality Improvement

The cumulative benefit (reduction of BER) from executing
on a processor with Lazy Pipelines is presented in Figure 11.
Figure 11(a) shows the overall BER of operations executed in
the integer ALU for the JPEG application. The Lazy architec-
ture consistently provides a BER reduction of at least 10%, and
as high as 41% across all voltages. This provides a direct com-
parison against Truffle [4], as their design’s output quality
would be the same as our base approximate architecture’s.
Figure 11(b) shows the benefits for the imprecise integer ALU
operations of the ADPCM application. We observe that Lazy
Pipelines can provide substantial improvements only in the
lowest range of voltages. This is due to the nature of the appli-
cation: ADPCM has only a small amount and a low number of
vacant cycles that its imprecise operations can utilize. More

specifically, the reduced benefits come from the high number
of similar and inter-dependent imprecise operations of the
application. These cause a large number of dependent instruc-
tions to execute back-to-back, thereby preventing the use of
slack.

Overall, the impact of Lazy Pipelines in the quality of an
application depends on the granularity of interleaving between
precision levels and the level of instruction level parallelism.

Fig. 8. BER reduction due to LFW and LWB in intALU operations (ADPCM)

���

���

���

���

 ��

����

���� ���� ��!� �� � ���� �� ���� ����

��
���

��
��
�	

�
��
��
�	

��

��	�

������

�
����� ������� �
����� �������

���

����

����

����

����

����

���� ��	� ��
� ���� �� ���� ��
�

��
���

��
��
�	

�
��
��
�	

��

��	�

������

������� ������� ������� �������

Fig. 9. BER reduction due to LFW and LWB in fpuADD operations (SOR).

���
����
����
����
����
�����

�� �� 	� ��
� ��

��
��
��

��
	

���
��

�
�

������������
��

��
�
�
��

Fig. 10. CDF of slack after the nominal end of execution of (a) integer ALU
(JPEG), and (b) FP add (SOR).

(a) intALU, JPEG

���
����
����
����
����
�����

�� �� 	� ��
� �� �� �� �� ��� ��� ���

��
��

��
��
��
��	

�

��
�

�����	��������

��
�
�
��

(b) fpuADD, SOR

���
����
����
����
����

��	� ��
� ���� ���� �� ���� ����

��
���

��
��
�	

�
��

��	�

������

��
���
�
��
����
�
��
����

���
���
���
���
��� �� ���� ����

��
���

��
��
�	

�
��

��	�

������

������������	
� ��
�����������

���

���

����

����

���� ���� ���� ��	� ��
� �� ���� ����

��
���

��
��
�	

�
��

��	�

������

Fig. 11. Overall improvement in BER of (a) integer ALU for JPEG, (b)
integer ALU for ADPCM, and (c) FP add for SOR.

(a) intALU, JPEG

(b) intALU, ADPCM

(c) fpADD, SOR

This is because higher interleaving of precision levels spreads
the utilization across functional units and increases slack.

While we do not employ this in our work, we believe that
there is the potential for the processor to achieve even higher
accuracy for a fixed power budget: it may be possible to specu-
latively prolong the execution of operations that exhibit zero
slack and delay the subsequent instructions with minimal
impact on the performance of the processor. We base this belief
on the observation of Fields et al. in [5] that 75% of dynamic
instructions can be delayed by five or more cycles with no
impact on program execution time.

D. Power Consumption

Lazy Pipelines exhibit a similar level of dynamic power
consumption as Truffle [4]. Both techniques hold the input to
the imprecise FU stable while its precise counterpart is execut-
ing a different instruction, and vice versa. However, as we
demonstrated, the additional cycles of execution (while main-
taining the input stable) allow for the progressive correction of
timing errors, thus the circuit switches and consumes dynamic
power. As both techniques utilize FUs in a similar manner, they
will encounter an instruction eviction after approximately the
same number of cycles and their dynamic power consumption
is similar. Their static power consumption is respectively simi-
lar. Overall, Lazy Pipelines can provide the power benefits of
an approximate computing architecture while providing signif-
icantly more accurate results. Figure 12 presents the normal-
ized power consumption of FUs in Lazy Pipelines over a
conventional (fully-precise) architecture.

VII. CONCLUSION

Approximate computing techniques that utilize voltage
over-scaling can significantly reduce the processor’s power
consumption. Hence, expanding their application can help
tackle the “Power Wall” that current designs face. We have
shown that prolonging the execution of operations in voltage
over-scaled functional units can result in a significant reduction
of the operations’ bit error rate and improve the accuracy of
approximate computations. We demonstrate that this can be
achieved by utilizing the vacant execution cycles (slack) of
functional units. The amount of available slack is application-
and microarchitecture-specific. The available slack is higher in
simple architectures with a small super-scalar width and no
hardware multi-threading, and it increases as the number of
functional units increases. Processor architectures that target
low-power design are typically based on simple RISC proces-
sors with relatively narrower superscalar width and weaker

out-of-order execution than their high-performance counter-
parts. Thus, such designs harness less of the available instruc-
tion-level parallelism and lead to lower utilization of the
available functional units. These architectures are good
matches to be coupled with Lazy Pipelines and can further
improve their power efficiency by utilizing the available slack
to operate a subset of their functional units at a lower supply
voltage. Compared to a state-of-the-art approximate architec-
ture (Truffle [4]), Lazy Pipelines exhibit similar power savings,
but can provide up to 41% lower bit error rate, leading to sig-
nificant quality improvement.

VIII. ACKNOWLEDGEMENTS

This work is partially supported by NSF award CCF-
1218768, NSF CAREER award CCF-1453853, and the Intel
Parallel Computing Center at Northwestern.

REFERENCES

[1] A. Asenov, G. Slavcheva, A. Brown, J. Davies, and S. Saini. Increase in
the random dopant induced threshold fluctuations and lowering in sub-
100 nm mosfets due to quantum effects: a 3-d density-gradient simulation
study. IEEE Transactions on Electron Devices, 48(4):722- 729, Apr 2001.

[2] R. Dennard, V. Rideout, E. Bassous, and A. LeBlanc. Design of ion-im-
planted mosfet s with very small physical dimensions. IEEE Journal of
Solid-State Circuits, 9(5):256- 268, Oct 1974.

[3] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-power
pipeline based on circuit-level timing speculation. In Proc. of the 36th An-
nual IEEE/ACM International Symposium on Microarchitecture, 2003.

[4] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture sup-
port for disciplined approximate programming. In Proc. of the 17th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVII, 2012.

[5] B. Fields, R. Bodik, and M. Hill. Slack: maximizing performance under
technological constraints. In Proc. of the 29th Annual International Sym-
posium on Computer Architecture, pages 47- 58, 2002.

[6] W. Godycki, C. Torng, I. Bukreyev, A. B. Apsel, and C. Batten. Enabling
realistic fine-grain voltage scaling with reconfigurable power distribution
networks. In Proc. of the 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 381- 393, 2014.

[7] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward dark
silicon in servers. IEEE Micro, 31(4):6- 15, July 2011.

[8] G. Hoang, R. B. Findler, and R. Joseph. Exploring circuit timing-aware
language and compilation. In Proc. of the 16th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVI, pages 345- 356, 2011.

[9] T. Mudge. Power: A first-class architectural design constraint. Computer,
34(4):52- 58, Apr. 2001.

[10] V. J. Reddi and M. S. Gupta. Resilient architecture design for voltage
variation. Synthesis Lectures on Computer Architecture. Morgan and
Claypool Publ., San Rafael, 2013.

[11] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. Enerj: Approximate data types for safe and general low-
power computation. SIGPLAN Not., 46(6):164- 174, June 2011.

[12] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multithreading: Maxi-
mizing on-chip parallelism. In Proc. of 22nd Annual International Sym-
posium on Computer Architecture, pages 392- 403, 1995.

[13] G. Tziantzioulis, A. M. Gok, S. M. Faisal, N. Hardavellas, S. Ogrenci-
Memik, and S. Parthasarathy. b-HiVE: A bit-level history-based error
model with value correlation for voltage-scaled integer and floating point
units. In Proc. of the 52nd Annual Design Automation Conference, 2015.

[14] J. Xin and R. Joseph. Identifying and predicting timing-critical instruc-
tions to boost timing speculation. In Proc. of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, 2011.

��
�
��
�
��
�
��
�
��
��

�
��

���� ������ �����

�
��
�
��
��
	

��
��

	�
�

�	
�� �	��� �	
�� �	��� �	��� �	��� �	��� �	���

Fig. 12. Power consumption of Lazy Pipelines at various Vdd against a
conventional (precise) architecture for ADPCM, SOR, and JPEG (idct kernel).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

