
SCP: Synergistic Cache Compression and Prefetching
Bhargavraj Patel

Qualcomm
Raleigh-Durham, NC, USA

bhargavrajpatel2012@u.northwestern.edu

Nikos Hardavellas, Gokhan Memik
Northwestern University, EECS

Evanston, IL, USA
{nikos, g-memik}@northwestern.edu

Abstract—While processor caches cannot grow arbitrarily
large due to area, power, and latency considerations, dataset sizes
grow faster than Moore’s Law and pressure caches to grow to
accommodate the increasing working sets. Cache compression
partially mitigates this problem by providing an effective cache
capacity larger than the physical capacity of the cache, but the
prevalent rule of thumb dictates that the miss rate lowers by only
the square root of the additional cache capacity. Data prefetching
and streaming engines can offer a better utilization of the cache
space, but sophisticated schemes typically require significant on-
chip space, and some even save part of the history they track in
main memory (e.g., Spatio-Temporal Memory Streaming—
STEMS) and oversubscribe the already limited off-chip band-
width. In this paper we present synergistic cache compression and
prefetching (SCP), a technique that utilizes the cache space saved
by cache compression to implement the storage arrays required
by data prefetching and streaming engines. SCP outperforms
cache-compression-only and data-streaming-only schemes, and
approximates the performance of a combined scheme that
employs both cache compression and data streaming in hardware,
but without the overhead of the additional history and storage
arrays for the streaming engine. Utilizing the cache compression
hardware to compress the storage arrays for a STEMS streaming
engine, in addition to the data cache, allows the streaming engine
to operate entirely on-chip using space saved by compressing the
cache, obviating the need to offload parts of the history to main
memory and further increasing performance.

Keywords—processor cache, cache compression, prefetching,
spatio-temporal data streaming

I. INTRODUCTION

The exponential growth of dataset sizes and the prolifera-
tion of multicore and manycore computing put an immense
pressure on the already oversubscribed off-chip memory band-
width. The bandwidth wall is one of the most pressing prob-
lems of modern processors [4], and the ITRS [3] roadmap
indicates that the performance gap between core and memory
will keep increasing. This realization has prompted research to
mitigate the memory-processor performance gap. The most
commonly-employed techniques today are prefetching and
cache compression [1, 7, 12, 14].

The cache hierarchy itself is one of the many techniques
that hide the main memory latency. However, its effectiveness
is constrained by the limited capacity and the core’s sensitivity
to the access latency of on-chip cache memory. Cache com-
pression is often proposed as a remedy to relax the trade-off
between cache size and cache access latency [1] as well as to
reduce the off-chip bandwidth requirement [2]. Compressing
cache data increases the effective cache size. This results in
reduced miss rates and fewer accesses to off-chip memory.
Recent research indicates that as the baseline cache size
increases, the additional cache capacity offers relatively
smaller benefit, thus cache compression provides diminishing
returns [2]. At the same time, however, hand-in-hand with the
increased cache capacity of newer processors comes an

increasing core count on chip. These cores tend to share the
last-level cache, which now again becomes a limited resource
as the capacity per core remains relatively stable or falls, while
data set sizes continue to grow.

Another architectural solution to hide memory latency is
hardware prefetching. Hardware prefetchers are mainly catego-
rized into two categories: stride prefetchers and stream
prefetchers. Stride prefetchers are simple to implement but less
accurate [16, 17]. Stream prefetchers are more accurate and
render high coverage, but they follow complex algorithms that
require a lot of meta-data storage and maintenance [6, 7]. These
meta-data are typically stored on chip and stress the hardware
resources with their demand for storage. In some cases, to real-
ize the high storage requirement, a significant fraction of meta-
data is stored in off-chip DRAM [5, 8]. While successful
prefetching improves performance, storing bookkeeping infor-
mation in off-chip memory results in additional demand for the
already oversubscribed bandwidth to main memory and
increases energy consumption.

Thus, on one hand we have cache compression which
makes more efficient use of the on-chip storage but provides
diminishing returns for larger caches. On the other hand we
have stream prefetchers which are highly successful in hiding
memory latency, but require significant amounts of on-chip
storage to operate. Combining the two techniques seems an
appealing proposition, as cache compression can free up on-
chip resources for the stream prefetcher, who may then make
better use of the additional capacity than just naively extending
the effective capacity of the cache.

In this paper we propose Synergistic cache Compression
and Prefetching (SCP), an architecture that leverages cache
compression to implement the storage components of stream-
ing prefetchers on the compressed cache. By doing so, SCP
eliminates the need to access off-chip memory. Without loss of
generality, we assume Spatio-Temporal Memory Streaming
(STeMS) [5] as the underlying stream prefetcher and Base
Delta Immediate (BDI) [2] to compress the cache data.

We demonstrate that SCP outperforms the compressed
cache or the streaming prefetcher alone, as well as their combi-
nation when the two techniques are employed as discrete com-
ponents that are separate from each other, rather than
synergistic. We further improve the performance of SCP by
compressing the prefetcher’s meta-data in addition to the cache
data. This compression of STeMS meta-data allows SCP to
reduce the size of the various STeMS components and gradu-
ally eliminate the need for off-chip meta-data storage and
reclaim the wasted bandwidth. Overall, our contributions are:

• We propose Synergistic cache Compression and
Prefetching (SCP), an architecture that leverages cache
compression to implement the storage components of
streaming prefetchers on the compressed cache.

• Using applications from SPLASH-2 and PARSEC we
show that SCP outperforms standalone cache compres-
sion (BDI), standalone memory streaming prefetchers
(STeMS), and their combination.

• We show that SCP can be further enhanced by com-
pressing the prefetcher’s meta-data in addition to the
cache data, which gradually obviates the need for off-
chip storage of the prefetcher’s meta-data.

The remainder of this paper is organized as follows:
Section II provides details on STeMS and the general idea of
how it can work synergistically with cache compression. We
present the compressed cache architecture in Section III and
SCP in Section IV. Sections V and VI detail our experimental
methodology and results. Section VII presents additional sensi-
tivity analysis and extensions to SCP. We present related work
in Section VIII and conclude in Section IX.

II. SPATIO-TEMPORAL MEMORY STREAMING (STEMS)

STeMS exploits both spatial and temporal locality to pro-
vide highly accurate data streaming [5]. Its spatial and temporal
predictors continuously train on the execution of applications,
and store the discovered data streams and their predictors in
meta-data. During the reconstruction phase, streams are formed
based on the meta-data and finally, in the streaming phase, by
following the appropriate stream, data are fetched from mem-
ory just ahead of their use [5]. STeMS consists of the Active
Generation Table (AGT), Pattern Sequence Table (PST),
Region Miss Order Buffer (RMOB), Lookup into MOB,
Streamed Value Buffer (SVB), and the reconstruction buffer.

A. Storage Requirements for STeMS

Table I shows the components of STeMS, their storage
requirement, and their location. Please note this list does not
include area estimates for computation hardware like adders or
shifters. Overall, STeMS requires a total of 1673 KB per core
(most of it off chip). In addition, it also requires a 4 MB lookup
into MOB table that all cores share. STeMS’ storage require-
ment is 9 KB/core on chip, 1664 KB/core off chip, plus a 4 MB
off-chip table shared across all cores.

B. Off-chip Bandwidth Requirements for STeMS

The RMOB and Lookup into MOB tables require MBs,
hence they are implemented off chip. As these arrays are
accessed frequently, STeMS implements an ingenuous method
that slowly streams on chip only the necessary parts while hid-
ing their latency. Even with an optimized access pattern to
these tables, though, STeMS may create considerable off-chip
bandwidth pressure. Figure 1 shows the breakdown of the off-
chip accesses for STeMS meta-data vs. the ones initiated by the

application. STeMS is responsible for up to 62% of the off-chip
data traffic (47% average). Hence, STeMS meta-data accesses
consume a significant fraction of the off-chip bandwidth and
may elicit detrimental performance consequences.

C. Cache Compression and STeMS Limitations

Overall, although STeMS is a highly accurate streaming
prefetcher, its performance is affected by (i) large storage
requirements for all its buffers and tables that force the design-
ers to push the majority of them outside the chip, and (ii) high
off-chip bandwidth utilization to access all this meta-data. Our
proposed architecture, SCP, utilizes the cache capacity saved
by the compressed cache to implement the on-chip storage for
STeMS without the need for additional on-chip memory, and
also brings the off-chip STeMS meta-data on chip and can even
compress them to allow maximum effective capacity. Hence,
SCP not only reduces STeMS’ hardware requirement, but also
completely eliminates the additional DRAM memory require-
ment for meta-data, and relieves the additional off-chip band-
width pressure. By bringing the meta-data on chip, it also
lowers their access latency. The reduced access latency allows
SCP to resize the arrays without performance loss and use the
available on-chip capacity even more efficiently.

III. CACHE COMPRESSION

Cache compression increases the effective size of the base-
line cache. It is a heavily studied technique to reduce the cache
misses and the off-chip bandwidth requirement. Various com-
pression techniques have been presented in literature [1, 2, 9].
To find a feasible underlying compression technique for SCP
and to understand the correlation between cache size and com-
pression effectiveness, we analyze Base Delta Immediate
(BDI) compression [2].

To analyze BDI, we compress the last level cache (LLC),
which is the L3 in our system. We model a conventional inclu-
sive cache read/write policy. The L1 is a private split instruc-
tion/data cache, and the L2 is a unified private L2 cache. The
L2 cache accesses the data from the L3 cache via compression
and decompression units that use BDI. All writes to L3 go
through the compression unit and all reads from L3 go through
the decompression unit. Furthermore, similar to prior work [2],
we constrain every cache block to contain a maximum of two
compressed cache lines to limit the tag space.

A. Cache Size and Compression

Recent architectures employ large caches as the multicores
grow in core counts and the last-level cache is typically shared.
We analyze the performance of BDI on large caches by imple-

TABLE I. STEMS STORAGE REQUIREMENTS

STeMS Component Storage Location

AGT 2.5 KB On chip

PST 640 KB Off chip

RMOB 1024 KB Off chip

SVB 4 KB On chip

Reconstruction / streaming buffers 2.5 KB On chip

Lookup into MOB 4096 KB Off chip (shared)

���

����

����

����

����

	����

�
��
��
��
	

��
��
��
�	

��

������� �����������������

Fig. 1. Distribution of off-chip traffic.

menting BDI in Gem5 [10]. Table II details the simulated
architecture on which we run the SPLASH-2 [13] applications
described in Table III. The latencies for all caches are derived
using CACTI [11].

As we mentioned in Section I, cache compression yields
diminishing returns as the cache size increases. Figure 2 shows
the miss rate for cache sizes between 0.5-4MB with compres-
sion (solid bars) and without compression (patterned bars). A
BDI-compressed cache offers lower miss rate than a baseline
cache of the same size. Actually, it approximates the miss rate
of a cache with double the size. For example, a 512KB cache
with compression achieves almost the same miss rate as a 1MB
cache without compression. For some applications (e.g., LU) a
1MB compressed cache renders lower miss rate than a 2MB
uncompressed cache. The reason behind this surprising result is
that cache compression alters the eviction patterns of the com-
pressed cache by implementing a slightly different LRU [2]
policy. Unlike conventional LRU, the algorithm used in com-
pressed caches considers the position of the blocks in the LRU
chain as well as the compressed size of the incoming cache line
and the cache lines already present in the set. The different
eviction patterns may randomly help or hurt performance; in
the case of LU, they help overall. These observations corrobo-
rate previous studies [2].

As expected, we also observe that cache compression yields
diminishing returns as the cache size increases (Figure 2). This
happens because for small cache sizes (e.g., 512KB) compres-

sion improves the effective cache size by 97% (Figure 3), while
for larger caches (e.g., 32MB) the improvement is only 32%.
This difference readily translates to performance improvement
as shown in Figure 4: compressing a 512KB cache increases
IPC by 25% on average (up to 30%), while compressing a
32MB cache yields only 12% speedup on average (up to 19%).

IV. SYNERGISTIC COMPRESSION AND PREFETCHING (SCP)

The advent of multicores has led to a significant increase in
cache sizes, and as Section II demonstrates, compression offers
diminishing returns with increasing cache size. In addition,
accurate prefetchers like STeMS are constrained by their exten-
sive memory requirement for meta-data storage and may suffer
from increased off-chip memory traffic [5]. These observations
motivate our proposed architecture: the STeMS limitations can
be mitigated if it is possible to keep the majority of the meta-
data on chip without adding extra hardware. A compressed
cache is a natural fit for this goal. Compression provides extra
space, but using that extra space as a conventional cache does
not render performance improvement equivalent to STeMS.
Hence, SCP implements STeMS memory components on the
extra cache space and eliminates any off-chip communication
for meta-data. SCP not only achieves the best of both tech-
niques, but also eliminates two of their major limitations.

TABLE II. ARCHITECTURAL PARAMETERS

L1 cache Split I/D, 64 KB, 2-way set associative, LRU replace-
ment, 64-byte cache line, 2-cycle access time

L2 cache Unified, 4 MB (unless otherwise specified), 8-way set
associative, LRU replacement, 64-byte cache line,
2.54 ns access time (12 cycles), core-private

L3 cache Unified, 32 MB (unless otherwise specified), 16-way
set associative, LRU replacement, 64-byte cache line,
5.26 ns access (25 cycles), shared

Main Memory DDR3, 1600MHz, 51.2 GB/s, 4 GB (128MB x 4 x 8
banks), single rank, 180-cycle access time,
timing: CL-tRCD-tRP-tRAS = 9-9-9-25

Processor 4 cores, each core 4-wide x86 OoO superscalar,
11-stage pipeline: fetch (3), decode (3), schedule (1),
execute (1+), retire (3), 64-entry ROB, 2.5GHz

Compression /
Decompression

BDI Compression: 1 cycle for L2, 2 cycles for L3,
Decompression: 1 cycle for L2 and L3

���

���

����

����

����

����

�
��
�	�

��
�	

����������������	
��� �
�������������
	
��� �
������������	
���
�
�������������
	
��� �
������������	
��� �
��������������
	
���

Fig. 2. Effect of cache compression on miss rate.

TABLE III. SPLASH-2 AND PARSEC APPLICATIONS

Application Domain Input Parameters

FFT Signal Processing 4,194,304 data points

LU HPC 1024×1024 matrix, 64×64 blocks

Ocean HPC 514×514 grid

Cholesky HPC tk29.O

Barnes HPC 65,536 bodies

Radix General 8,388,608 integers

Raytrace Graphics Car

x264 Media Processing 256 frames, 1280x800 pixels

Fluidanimate Animation 10 Frames, 600,000 particles

Canneal Engineering 800,000 elements

Blackschole Financial Analysis 128 swaptions, 20,000 simulations

Ferret Similarity Search 512 queries, 34,973 images

Dedup Enterprise Storage 256MB data

���

����

����

����

����

�����

��
��

�

�	
��

��
�	
	

��
	��

��
��
��

��
�	

	��
� �
� �
� �
� �
� ��
� ��
�

Fig. 3. Increase in effective cache size due to compression.

A. SCP Implementation

All on-chip tables for STeMS are in SRAM memory so it
can be easily placed into the cache memory. As mentioned in
Table I, STeMS requires 1673 KB per core in addition to the
fixed 4 MB shared memory requirement. The components
AGT, PST, RMOB, SVT, and reconstruction buffer are per-
core components, while the Lookup into MOB table is shared
between all cores. In our architecture, L2 and L3 are both com-
pressed using BDI compression. L2 is core-private and imple-
ments all per-core STeMS components except the
reconstruction buffer. As the reconstruction buffer is accessed
most frequently throughout the reconstruction process, it is not
implemented on the cache but as a separate buffer similar to the
original STeMS proposal. Hence, 1673 KB out of total 4MB of
L2 space are dedicated to STeMS components, and the rest of
the L2 cache works as a BDI-compressed cache described in
Section II. Similarly, the Lookup into MOB array, which is
shared between four cores, is implemented on the shared L3
cache. Thus, 4 MB out of a total 32 MB of L3 cache memory
are allocated to the Lookup into MOB table, and the rest of the
L3 cache is implemented as a BDI-compressed cache described
in Section II. Table IV summarizes the location of each compo-
nent for the STeMS and the proposed SCP implementation.

Figure 5 depicts the implementation of SCP for a single
core. The L1 instruction, L1 data, and L2 caches are core-pri-
vate and the L3 cache is shared among the cores. As mentioned
earlier, all core-private STeMS components except the Recon-
struction and Streaming buffers are implemented on the com-

pressed L2 cache and all shared STeMS components (i.e., the
Lookup into MOB table) are implemented on the shared L3
compressed cache. As both caches are compressed using the
same BDI algorithm [2], no compression and decompression
modules are required between L2 and L3. For SCP we assume
that the STeMS data stored on the caches are not compressed;
we will evaluate a version of SCP that compresses the STeMS
data as well at a later section.

B. STeMS Components on Cache

All the STeMS components that were originally on chip are
still on chip in SCP and stored on the caches, so they can be
easily implemented. However, in the base STeMS implementa-
tion, RMOB and Lookup into MOB were originally off chip. In
SCP, they are stored in the caches too. Each STeMS component
is allocated a specific address range on the cache according to
the component’s size. A state machine to mimic the same
behavior of the STeMS component out of cache memory is also
implemented. Moreover, any access to any entry in a STeMS
table is implemented as a conventional cache access. Each
component implementation is explained below.

1) Hash Table
The Hash table is used to retrieve the location of the first

occurrence of the off-chip miss address in the RMOB. We use
the same bucketized probabilistic hash table as STeMS [8] and
used by Wenisch et al. [6]. The difference here is that a bucket
points to multiple entries of a particular set in the cache instead
of one in main memory. All the entries available in 16 ways are
linearly compared to the miss address in order to retrieve the
RMOB pointer for that address. Furthermore, unlike previous
work [6], SCP does not require a dedicated implementation of
LRU as support for the same is already available in a conven-
tional cache which follows LRU.

2) Region Miss Order Buffer (RMOB):
The RMOB is a circular buffer and records off-chip miss

addresses (5-bytes physical address) along with 16 bits for the
PC and 8 bits for the delta, totaling of 8B per entry, having

���
	��
����
�	��
����
�	��
����

��
��
��

�	

	��
� �
� �
� �
� �
� ��
� ��
�

Fig. 4. Performance improvement of compressed caches over uncompressed.

�����������

��	
������ �!�
��"�

�������������
���#�
�
�$�

��	%����������
���#�
�
�$�

�&���

�'���	%����

�(��������

�&���

�
$�)�������

���#)��
	�� �����#)��
	��

���
)�*�
������	
��
�+���$�

��	%����������������
�������

���,
��
�����$�

���#)��
	�������#)��
	��

�
����	#�

Fig. 5. STeMS on compressed cache.

Fig. 6. RMOB entry access mechanism in SCP

TABLE IV. STEMS COMPONENTS LOCATIONS

STeMS
Component

STeMS
Implementation

SCP
Implementation

AGT On Chip On Chip (L2 Cache)

PST Off Chip (DRAM) On Chip (L2 Cache)

RMOB Off Chip (DRAM) On Chip (L2 Cache)

SVB On Chip On Chip (L2 Cache)

Lookup into MOB Off Chip (DRAM)
shared by n cores

On Chip (L3 Cache)
shared by n cores

Reconstruction and
streaming buffers

On Chip On Chip

128K entries. A Hash table (explained previously) is used to
find the recent location of the address in the RMOB and using
that pointer an entry related to the specific miss address is
retrieved from the RMOB. To implement RMOB on the cache
(Figure 6) each cache block contains 2 RMOB entries and a
contiguous 128K-entry region is allocated for RMOB, which
can be accessed by the RMOB pointer retrieved from the Hash
table for a particular miss address. As Figure 6 depicts, each
off-chip miss address goes to the Hash table to find the RMOB
entry for the first occurrence of that address. Once an address
for the same is generated from the table, it is given back to the
RMOB to retrieve the data for the reconstruction.

3) Active Generation Table (AGT):
The Spatial Streaming engine records the blocks accessed

over the course of a spatial region generation in the active gen-
eration table (AGT). When a spatial region generation begins,
an entry is allocated in the AGT and continuously updated until
the spatial block ends and is sent to PST [5]. An end-of-spatial-
block is detected by eviction or invalidation of any block
accessed during the generation. Each entry in AGT is stored
using a spatial region tag, the high-order bits of the region base
address, and also accessed using the same tag. The same table
is implemented on the SRAM by storing its spatial region tag
into a conventional cache tag in the region allocated for AGT.

4) Pattern Sequence Table (PST):
PST is a set-associative structure similar to a cache. The

PST is accessed using a prediction index constructed from the
PC and a spatial region offset of the trigger access for a gener-
ation. Each entry in the PST stores the spatial pattern that was
accumulated in the AGT [6]. As PST itself is a set associative
structure like a cache, it can be directly mapped on the cache
using prediction index formed by PC and offset from the cache.
Upon a trigger access, the Spatial streaming engine consults the
PST to predict which blocks will be accessed during the gener-
ation. If an entry in the PST is found, the spatial region’s base
address and the spatial pattern are copied to one of several pre-
diction registers [6].

5) Prefetch Buffer (SVB):
This buffer stores the prefetched data and avoids cache pol-

lution due to mispredictions. Once the processor accesses the
data from SVB, the data is moved to the cache. As SVB is a
buffer consisting of chunks of data, it can be directly mapped to
the cache. We allocate a linear region on the last level cache to
store 64 entries of SVB. However, this implementation suffers
from the higher latency of L2 cache compared to the STeMS
dedicated SVB implementation. This is not on the critical path
of the processor, though, and does not affect the performance.

V. EXPERIMENTAL METHODOLOGY

We evaluate SCP and compare it to other techniques using
the cycle accurate full system simulator Gem5 [10]. The Gem5
models a full system x86 architecture and can execute unmodi-
fied workloads and different operating systems. We model a
processor with four x86 out-of-order-cores and three levels of
coherent inclusive cache memory. A detailed system configura-
tion is described in Table II. In our system, the L1 cache is split
into instruction and data cache, the L2 cache is a private cache,
and L3 is shared between four cores. All compression and
decompression units follow the BDI [2] algorithm. DRAM is
implemented by integrating Gem5 with DRAMSim. The
latency and timing parameters for different caches are derived
using Cacti 5.3 [11]. We model a MESI [15] protocol for cache
coherence.

To achieve a good balance when evaluating SCP we use a
mixture of SPLASH-2 [13] and PARSEC [12] benchmarks.
Table III details the applications we use in our experiments. We
collect our results by taking checkpoints at various points. To
avoid cold-start effects, a measurement is not collected for the
first 2M memory requests. After that, a simulation is allowed to
run for 4B memory requests. To measure performance we cal-
culate IPC as the aggregate number of instructions committed
per cycle by all cores.

VI. EXPERIMENTAL RESULTS

For simplicity, in the remainder of the paper we will use the
following notation: C = cache compression only, S = baseline
STeMS only, C+S = compressed cache and STeMS together,
SCP = synergistic cache compression and prefetching using
BDI for compression and STeMS for memory streaming, and
CSCP = SCP where the STeMS meta-data are also compressed

A. Miss Rate Improvement

Figure 7 presents the miss rate reduction achieved by C, S,
C+S, and SCP for the SPLASH-2 and PARSEC applications in
Table III. The miss rate reduction is calculated over a baseline
architecture that does not employ compression or STeMS. The
misses represent accesses to off-chip main memory (i.e., L3
misses). They do not include accesses related to STeMS meta-
data. Figure 7 indicates that the miss rate improvement for C+S
is the highest as it leverages the advantages of both techniques
without the downside of accessing main memory for STeMS
meta-data. SCP is outperformed by C+S (8% vs. 13% miss rate
reduction respectively), but performs better than compressed
cache alone, and perform as well as STeMS. This result is
expected due to two factors. First, C+S compresses the cache
and utilizes the extra space as a cache. In our SCP implementa-

�
�

�
�

��
�

��
�

��
�

�
��
�	�

��
		
�	

��
��
��

	 ��������	
����
��

��
�� ��������	
�
��

����
��
���

Fig. 7. Miss rate reduction for cache compression, STeMS, C+S, and SCP.

���
���
���
���
���
����
����
����
����
����
����

��
		

�

�	

��������	
����
��

��
�� ��������	
�
��

����
��
��� �
���

Fig. 8. Performance improvement over baseline uncompressed cache.

tion, although the cache is compressed, the saved space in both
L2 and L3 caches is mostly utilized to store STeMS meta-data.
Thus, SCP does not benefit much from miss reduction due to
compression. Second, we do not change the STeMS algorithm
and its design for SCP. Thus, the miss rate improvement of SCP
is almost the same as STeMS’ miss rate improvement.

B. Performance Improvement

As shown in Figure 8, SCP achieves on average 10%
higher IPC (and up to 16%) over a baseline cache with no com-
pression and no STeMS support. Furthermore, for all the appli-
cations, compressed cache and STeMS together (C+S) results
in higher improvement than C or S alone, because it leverages
the advantages of both techniques. The IPC improvement is
mostly additive, except for a few applications.

We have further analyzed C+S and SCP to make sure the
gain in SCP is not just because of using these two techniques
together. These two implementations (C+S and SCP) have
major differences. In C+S the cache is compressed and STeMS
is in its original implementation so the meta-data is stored off
chip or on chip using extra hardware. In SCP the cache is com-
pressed and STeMS meta-data is stored on the compressed
cache. Consequently, C+S creates extra demand of off-chip
bandwidth while SCP suffers no extra off-chip access at all.
That is the main reason why SCP renders higher IPC perfor-
mance than C+S. As indicated in Figure 1, on average, STeMS
meta-data accesses constitute 47% of off-chip bandwidth utili-
zation. Our implementation eliminates all of STeMS-related
off-chip accesses and makes more bandwidth available to the
actual application. Consequently SCP achieves high prediction
accuracy without oversubscribing the off-chip bandwidth.

Applications that are bandwidth limited like ocean, radix,
canneal and ferret have shown less IPC improvements for
STeMS than compressed cache although they exhibit higher
improvement in miss rates compared to the compressed cache
(Figure 7). This indicates that for bandwidth-limited applica-
tions, STeMS can predict accurately and improve the miss rate
but at the cost of extra bandwidth requirement which constrains
IPC improvement. Our implementation eliminates that limita-
tion of STeMS and renders better IPC performance than all
other alternatives. For example, for radix, SCP results in 11%
higher improvement than STeMS (S) and 6% higher than com-
pressed cache and STeMS (C+S) together. Similarly, for ferret,
SCP results in 10% higher improvement than STeMS and 5%
higher than compressed cache and STeMS together.

In addition to that, barnes and raytrace are also bandwidth
limited applications and show less IPC improvement with

STeMS compared to the compressed cache. At the same time,
the improvements in miss rate for STeMS is also less compared
to the compressed cache. In other words, for these applications,
STeMS can not predict the patterns accurately. For these appli-
cations, STeMS increases the memory bandwidth demand and
does not reduce the miss rates considerably. For these scenar-
ios, SCP performs better by eliminating the extra bandwidth
requirement and also leveraging the advantage of compressing
the cache. Furthermore, SCP compresses both L2 and L3.
Hence, compressed data is communicated between L2 and L3.
This reduces the bandwidth requirement between L2 and L3
caches. It is important to note here that our technique has this
advantage only over STeMS.

Overall, SCP achieves average speedups of 7% over a com-
pressed cache, 6% over STeMS, and 2% over C+S. However,
on the applications that SCP really targets (i.e., bandwidth-lim-
ited workloads like ocean, radix, canneal and ferret) SCP
achieves speedups of 7% over compressed cache, 10% over
STeMS and 5% over C+S, respectively.

VII. COMPRESSING SCP AND RESIZING STEMS TABLES

STeMS has different buffers and tables to store meta-data
information and predict future accesses. The latency of access-
ing these buffers and tables, particularly the off-chip ones, is
one of the very important parameters that define the sizes of
both on-chip and off-chip tables. In general, the higher the off-
chip latency, the larger the size of tables required to implement
STeMS. In our implementation, all the off-chip tables are on
chip, so the access latency to the RMOB and PST tables is
reduced. This affects both on-chip and off-chip table sizes.

Further, even though we are using compression for applica-
tion data, up to now we refrained from compressing the STeMS
data in order to make fair comparisons with the original
STeMS. Using compression for STeMS data adds compression
and decompression latency to access STeMS data, but it also
reduces the required space for STeMS tables and renders more
space for application data. Hence, in this section, we present
results of a system that compresses STeMS meta-data as well
using the BDI compression algorithm. We compress all the
STeMS meta-data stored in the L2 and L3 caches. With this
new implementation, Compressed SCP (CSCP), we need to
resize the STeMS tables as described in the next section.

A. Resizing

Figure 9 shows the speedup achieved when resizing differ-
ent STeMS tables. The experiment is run on the same system
configuration and same mix of PARSEC and SPLASH-2 appli-

���
���
���
���
���
����
����
����
����
����

�� ���� ����� ����� ����� ����� ����� ����� �����

��
��
��

�	

����	�	
���		�
�	
���	��	�
�	���	��	�	

����

�����

�	��

���
��

Fig. 9. Performance sensitivity of resizing STeMS components with BDI.

��
����
����
����
����
����
����
����
����

��

��

��

��

��

���

���

�
�	
��
��
�	
	��

�

�	

��
	�
��
��
�	�
	�

��
�	

	��

�

�	 ������������������	��
���� �
����������
����

Fig. 10. Average blocks per set and avg. compression ratio (ACR) for CSCP.

cations as in the previous section. Results collected over all
these applications are averaged and presented here. Please note
that only the tables available on L2 and L3 caches are com-
pressed, i.e., the reconstruction buffer and SVB are not com-
pressed. According to our results, for AGT at 2176 bytes, PST
at 512 KB, RMOB at 640KB and Lookup into MOB at 2688
KB performance improvement saturates. As shown in Table V,
in total, the original STeMS design needs 5769 KB of storage
while with the new compressed meta-data implementation it
needs 3848.125 KB storage. This corresponds to an average of
33.4% storage reduction.

B. Performance Evaluation of CSCP

Figure 8 compares the speedup achieved by the new imple-
mentation (CSCP) with the previous one (SCP) and configura-
tions C, S, and C+S. On average, CSCP achieves 2% higher
performance than SCP across all applications, and 4% higher
performance across bandwidth-limited applications. Overall,
CSCP achieves average speedups of 9% over a compressed
cache, 9% over STeMS, and 4% over C+S. For bandwidth-lim-
ited workloads (ocean, radix, canneal and ferret) CSCP
achieves speedups of 10% over compressed cache, 13% over
STeMS and 8% over C+S.

This improvement is due to the increase in available cache
memory for application data due to the reduction in STeMS
tables sizes. In order to measure the effective cache size, we
also collected average blocks per set with compression
throughout the simulation (Figure 10). Further, to observe the
correlation between performance improvement and compres-
sion, we also measured the Average Compression Ratio
(ACR). For a cache line, the Compression Ratio is the ratio of
the cache line data size after compression over the uncom-
pressed size. ACR is calculated by taking the average of the
compression ratios of all cache lines compressed throughout
the simulation. Hence, if ACR is low it means that compression
is high and vice versa. In Figure 10, ACR is represented on
right axis. Figure 10 clearly depicts the reason behind the
higher performance improvement of CSCP compared to SCP.
For low ACR, the improvement in average blocks per set is
high as compression is high. Consequently, more cache size is
available for application data. As a result, higher performance
improvement is achieved with CSCP compared to SCP.

Finally, Figure 11 shows the speedup of SCP and CSCP
assuming 1 and 2 ported caches. SCP 1p and CSCP 1p are the
configurations we have used in our evaluation so far, and
employ a single port in the cache. SCP 2p and CSCP 2p are
configurations with two cache ports that we use in this experi-
ment to evaluate the improvement that our technique could

achieve if more ports are available in the cache to eliminate
contention. As simulation results indicate, SCP and CSCP ben-
efit from the additional port by gaining 2% higher speedup over
their single-ported counterparts. Still, compared to the original
cache configurations, the majority of the improvements come
from the SCP and CSCP techniques themselves, not from the
additional ports. While SCP and CSCP may exacerbate conten-
tion on the cache ports, their benefits severely outweigh this
limitation. If additional ports or other contention-mitigation
techniques are employed on the caches, then SCP and CSCP
will perform even better that what our results indicate.

C. Sensitivity of CSCP to Cache Size

The size of the L2 and L3 caches affects CSCP in complex
ways. The smaller the caches are, the harder it is for STeMS
tables to fit in them. At the same time, the miss rate increases
and provides more opportunity for cache compression and
STeMS to improve performance. In our evaluation so far we
modeled the cache sizes indicated in Table II, which are on the
high-end of modern processors. Figure 12 shows the perfor-
mance impact of CSCP on a multicore with 1MB L2 and 16MB
L3 caches (CSCP-1-16), providing a data point that is closer to
modern systems (the rest of the architectural parameters remain
the same). Overall, even with 2-4x smaller caches, the perfor-
mance advantage of CSCP remains robust. On average across
all workloads, CSCP-1-16 provides 2% higher speedup than
CSCP on larger caches (CSCP-4-32). On bandwidth-limited
workloads, CSCP-1-16 does better and achieves on average 4%
higher speedup (up to 6%). The per-application results are
mixed, however, as there are workloads showing a small per-
formance degradation (e.g., -2% for raytrace) while others
show an improvement (e.g., 6% for radix). While a full-scale
sensitivity analysis is beyond the scope of this paper, these
results offer a glimpse into the complex nature of this trade-off

���
���
���
���
���
����
����
����
����
����
����

��
		

�

�	

	
���� 	
	
����
	
���� 	
	
����

Fig. 11. Impact of additional ports on performance.

TABLE V. SIZE OF STEMS COMPONENTS WITH BDI COMPRESSION

STeMS component Original size Compressed % Improvement

AGT 2.5 KB 2.125 KB 15%

PST 640 KB 512 KB 20%

RMOB 1 MB 640 KB 37.5%

Lookup into MOB 4 MB 2688 KB 34.375%

SVB 4 KB 4 KB 0%

Reconstruction and
Streaming Buffers

2.5 KB 2.5 KB 0%

Total 5769 KB 3848.125 KB 33.4%

���

���

����

����

����

����

��
		

�

�	

���	
�
���
����������������� ���	
�
���
�����������������

Fig. 12. Sensitivity of CSCP to cache size.

and indicate that the overall performance of CSCP is likely to
be preserved even with significant changes in cache size.

VIII. RELATED WORK

Alameldeen and Wood proposed dynamic cache compres-
sion based on a decoupled variable-segment cache structure
[18] using a frequent pattern compression algorithm [1]. Hall-
nor and Reinhardt proposed a unified compression scheme
based on indirect-indexing cache [19]. Chen et al. proposed C-
Pack cache compression based on the PBPM algorithm [20].
Xie and Loh propose thread-aware dynamic cache compression
to make better per-thread compression decisions [22]. Mowry
et al. proposed Base-Delta-Immediate (BDI) compression [2].
Our technique could use any of these algorithms for compres-
sion. Alameldeen and Wood use cache compression’s extra
tags to help prefetching [21]. Somogyi et al. and Wenisch et al.
[5-8] present spatial-, temporal-, and spatio-temporal stream-
ing. SCP is applicable to any prefetcher and streaming mecha-
nism that requires on-chip storage, but is more beneficial to
ones that offload meta-data to off-chip memory (e.g., STeMS).

IX. CONCLUSION

As the demand for larger caches grows and the increase in
core counts continues to oversubscribe the available off-chip
memory bandwidth, techniques like cache compression and
streaming prefetchers are bound to become increasingly impor-
tant. However, instead of employing these techniques in isola-
tion, we show that processors can benefit greatly by combining
them. In this paper we propose Synergistic Cache Compression
and Prefetching (SCP), an architecture that utilizes cache com-
pression to implement efficiently memory streaming prefetch-
ers using the additional space saved by the cache compression.
Compressing the prefetcher’s meta-data as well (Compressed
SCP or CSCP for short) yields even higher benefits. In addi-
tion, our proposed architecture removes the extra off-chip
memory bandwidth required by the more sophisticated mem-
ory streaming prefetchers (e.g., STeMS) and as a result
achieves even higher performance than the combination of
compression and streaming.

Overall, our results indicate that SCP and CSCP achieve on
average 10-13% higher performance (up to 22%) over a base-
line architecture that does not employ any of these techniques.
SCP and CSCP outperform cache compression and memory
streaming (STeMS) alone by 6-9% on average (up to 15%).
Even compared to employing cache compression and STeMS
memory streaming together as discrete separate techniques
with all the necessary additional hardware, SCP and CSCP
achieve an additional 2% speedup (up to 6%). Thus, synergistic
cache compression and prefetching can match or exceed the
performance of implementing these techniques alone. SCP and
CSCP, however, allow the implementation of such complex
streaming prefetchers with minimal hardware impact, as the
majority of the required storage is implemented by harnessing
the cache space saved by compressing the cache itself. We
believe that this result corresponds to a definitive step forward
in making complex prefetchers with large on-chip storage
requirements practical to implement.

X. ACKNOWLEDGEMENTS

This work is partially supported by NSF award CCF-
1218768, NSF CAREER award CCF-1453853, DoE award
DE-SC0012531, and an Intel URO Energy Smart SoC Program

grant. The authors would also like to thank the reviewers for
their insightful comments.

REFERENCES

[1] A. R. Alameldeen and D. A. Wood. Frequent pattern compression: A sig-
nificance-based compression scheme for L2 caches. Technical Report,
University of Wisconsin-Madison, 2004.

[2] T. C. Mowry, G. Pekhimenko, V. Seshadri, O. Mutlu, M. A. Kozuch, P.
B. Gibbons. Base-Delta-Immediate Compression: Practical Data Com-
pression for On-Chip Caches. In 21st International Conference on Parallel
Architecture and Compilation Techniques, 2012.

[3] ITRS. http://www.itrs.net/Links/2012ITRS/Home2012.htm

[4] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin.
Scaling the bandwidth wall: challenges in and avenues for CMP scaling.
In 36th Annual International Symposium on Computer Architecture, 2009

[5] S. Somogyi, T. F. Wenisch, A. Ailamaki and B. Falsafi. Spatio-temporal
memory streaming. In 36th International Symposium on Computer Archi-
tecture, 2009.

[6] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki and B.
Falsafi. Temporal Streaming of Shared Memory. In 32nd Annual Interna-
tional Symposium on Computer Architecture, 2005.

[7] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.
Spatial Memory Streaming. In 33rd Annual International Symposium on
Computer Architecture, 2006.

[8] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos.
Practical off-chip meta-data for address-correlated prefetching. In 15th
Symposium on High Performance Computer Architecture, 2009.

[9] L. Benini, D. Bruni, B. Ricco, A. Macii, and E. Macii. An adaptive data
compression scheme for memory traffic minimization in processorbased
systems. In IEEE international conference on circuits and systems, 2002.

[10] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J.
Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M.
Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator. SI-
GARCH Computer Architecture News, 39(2), pp. 1-7, August 2011.

[11] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACTI 5.1.
HP Tech Report HPL-2008-20, April 2, 2008.

[12] C. Bienia, S. Kumar, J. P. Singh and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In 17th Interna-
tional Conf. on Parallel Architectures and Compilation Techniques, 2008.

[13] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-
2 Programs: Characterization and Methodological Considerations. In
22nd Annual International Symposium on Computer Architecture, 1995.

[14] J. Dusser, T. Piquet, and A. Seznec. Zero-content augmented caches. In
International Conference on Supercomputing, 2009.

[15] M. S. Papamarcos and J. H. Patel. A low-overhead coherence solution for
multiprocessors with private cache memories. In 11th Annual Internation-
al Symposium on Computer Architecture, 1984.

[16] N. P. Jouppi. Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers. In 17th Annual In-
ternational Symposium on Computer Architecture, 1990.

[17] T. Sherwood, S. Sair, and B. Calder. Predictor-directed stream buffers. In
33rd International Symposium on Microarchitecture, 2000.

[18] A. R Alameldeen, and D.A Wood. Adaptive Cache Compression for
High-Performance Processors. In 31st Annual International Symposium
on Computer Architecture, 2004

[19] E. G, Ha1Inor, and S. K. Reinhardt. A fully associative software managed
cache design. In 27th Int’l. Symposium on Computer Architecture, 2000

[20] X. Chen, L. Yang, R. P. Dick, L. Shang, H. Lekatsas. C-Pack: a high-per-
formance microprocessor cache compression algorithm. In IEEE Transac-
tions on Very Large Scale Integration Systems, l8(8), 2010

[21] A. R. Alameldeen and D. Wood. Interactions between compression and
prefetching in chip multiprocessors, In 13th International Symposium on
High Performance Computer Architecture, 2007.

[22] Y. Xie and G. H. Loh. Thread-aware dynamic shared cache compression
in multi-core processors. In 29th International Conference on Computer
Design, 2011

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

