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ABSTRACT

Existing timing error models for voltage-scaled functional units
ignore the effect of history and correlation among outputs, and the
variation in the error behavior at different bit locations. We propose
b-HiVE, a model for voltage-scaling-induced timing errors that
incorporates these attributes and demonstrates their impact on the
overall model accuracy. On average across several operations,
b-HiVE’s estimation is within 1-3% of comprehensive analog sim-
ulations, which corresponds to 5-17x higher accuracy (6-10x on
average) than error models currently used in approximate comput-
ing research. To the best of our knowledge, we present the first bit-
level error models of arithmetic units, and the first error models for
voltage scaling of bitwise logic operations and floating-point units.

Categories and Subject Descriptors

1.6.5 [Simulation and Modeling]: Model Development-Modeling
Methodologies; B.8.1 [Hardware]: Performance and Reliability—
Reliability, Testing, and Fault-Tolerance.

General Terms
Measurement, Reliability, Experimentation.

Keywords
Approximate Computing, Voltage Scaling, Error Modeling.

1. INTRODUCTION

Power has become a first-class design constraint [12] for both
high-end and mobile systems due to the breakdown of Dennard’s
scaling and the advent of dark silicon [7]. Several techniques to
reduce power have been proposed, including dynamic voltage and
frequency scaling, near-threshold computing, sleep states, and spe-
cialized cores (accelerators). However, the impact of these
techniques is hampered by the traditional worst-case design of sys-
tems. Advanced technology scaling leads to a probabilistic behav-
ior in CMOS [1], forcing designers to add significant voltage
margins and timing slack [13] to overcome the environmental fluc-
tuations and design uncertainties. The resulting conservative
guard-bands reduce both performance and power efficiency.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

DAC '15, June 07 - 11, 2015, San Francisco, CA, USA

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-3520-1/15/06 $15.00
http://dx.doi.org/10.1145/2744769.2744805

j?Department of Computer Science
The Ohio State University, Columbus, OH, USA

{faisal, srini}@cse.ohio-state.edu

In an attempt to improve power efficiency, recent research pro-
posed techniques for error-tolerant execution [2,3,5,8,10,11,16,17]
that detect and correct the occasional circuit errors, but prohibit the
aggressive voltage scaling of functional units (FUs). Lately the
research community took a step further and embraced approximate
computing by allowing faults in execution while providing accept-
able output quality by limiting the errors only to computations that
can tolerate them [4,14,15]. These techniques allow the voltage to
scale well beyond what error-tolerant techniques can afford.

Approximate computing via voltage scaling, at both the architec-
tural and component design levels, requires thorough assessment
with an accurate error model to explore the accuracy-power trade-
off. An incorrect error model could lead to the discarding of poten-
tially useful tools and aversion from a fruitful path on improving
the power efficiency of future computer systems. Prior works have
used a variety of error models to correlate the energy savings to
output quality of applications, from single bit-flip probabilities to
uniform distribution models to random values [4,14,15].

However, these error models are not able to fully capture the error
behavior of FUs. Current error models do not cover important fam-
ilies of FUs such as those that perform floating point and bitwise
logic operations (e.g., xor), which behave drastically different than
integer adders. Moreover, they ignore the impact of computation
history: prior operations on a FU affect the result of the current
computation, as switching a signal is typically harder than keeping
it constant. Existing models also ignore the impact of value corre-
lation: the values of consecutive operations in a real application
are often similar, thus missing timing does not necessarily mean
that the output is incorrect. Finally, current models uniformly apply
a single error probability to all bits, ignoring the variability in error
behavior across bit locations, which is often significant.

In this paper we address these shortcomings and propose b-HiVE,
a novel error model for voltage-scaling-induced timing errors in
FUs that incorporates computation history, value correlation, and
awareness of bit location. b-HiVE attains at least 5x higher accu-
racy than current error models for integer operations and 6-10x
higher accuracy on average across all modeled operations, while its
predictions are within 1-3% of comprehensive analog simulations.
We target the largest variety of components studied to date, and
present the first error models for floating point and bitwise logic
functional units. More specifically, our contributions are:

*  We present a detailed characterization of the bit-level error
behavior of industrial-strength integer, bitwise logic, and float-
ing-point units across operation types and voltage levels.

* We analyze the impact of computation history on the error
behavior of arithmetic units at reduced voltage and show that
including the history of the immediately preceding operation
(History-1) is necessary and sufficient to obtain high accuracy.



*  We quantify the impact of value correlation in the error behav-
ior of arithmetic operations.

*  We derive robust error models using both machine learning
and probabilistic techniques that accurately capture the error
behavior of these FU designs on real applications.

2. RELATED WORK

There is a large body of work in detecting and correcting the timing
errors that stem from voltage-overscaling or overclocking FUs.
Razor [2,3] is a register transfer level technique that allows opera-
tion in sub-nominal voltage regimes and provides a mechanism for
detecting and correcting timing errors in the pipeline. Ernst et al.
[3] collected timing violation statistics with measurements from
voltage-scaled FUs synthesized in FPGAs, a fabricated in-order
processor, and SPICE-level analysis. Subsequently, Krimer et al.
[10] adapted the Razor technology to GPUs and utilized this data to
construct an error model for integer adders and multipliers based
on an exponential relationship between the supply voltage scaling
factor and the observed timing behavior in their data. In contrast to
b-HiVE, this model ignores the impact of bit location and compu-
tation history, and only covers integer add and multiply operations.

Recently-proposed CAD techniques provide graceful degradation
of modules under voltage-overscaling or overclocking, combined
with correction for the occasional timing errors [5,11,15,16]. It has
been shown that some instructions are more likely than others to
stress the circuit’s critical paths and produce timing errors, which
gave rise to techniques that allocate extra cycles to critical instruc-
tions or substitute critical instructions with less critical ones [8,17].
b-HiVE can be used in that line of research to provide a high accu-
racy bit-level error model of a multitude of arithmetic units, cou-
pled with the accurate error behavior of real applications.

More recent research has embraced approximate computing, where
errors are allowed to occur at certain locations in a program,
enabling even more aggressive voltage scaling. A programming
framework and architecture were recently proposed [4,14] for
marking individual instructions as imprecise and executing them in
aggressively voltage-scaled FUs. Work in this space has relied on
basic fault injection error models that perform single bit flips at the
output with uniform distribution [14], or select random or previ-
ously seen values for the entire output [14], resulting in highly
inaccurate error predictions. Subsequent works [4] rely on uniform
bit-error models with per-component probabilities, but these mod-
els are not reproducible as no details are publicly available. Unlike
these models, b-HiVE accounts for variability of behavior among
bit locations and the past history of activity for an output bit, and
also, for the first time, provides an error model of FUs executing
logic and floating-point operations.

The impact of correlation between consecutive values in the behav-
ior of an error-tolerant design has been considered with a limited
study focusing on the carry propagation of integer adders [9]. Our
work performs the first detailed study of this phenomenon consid-
ering the overall operation of several complete FUs, with SPICE-
level analog simulations. In addition, b-HiVE captures the varia-
tion in error rate between different bits of the same operation at
each voltage level. Unlike previous error models that represent the
error rate for a given voltage with a scalar value for the entire FU
output word, our findings suggest that a per-bit error rate is
required for accurate modeling.

3. MODELING FRAMEWORK OVERVIEW

Our modeling framework is comprised of three phases: Character-
ization, Data Classification, and Model Generation. In the first
phase we collect detailed information about the behavior of each
component under supply voltage scaling. We extract and synthe-
size the full circuit blocks of each component and conduct detailed
analog simulations in a range of supply voltages using both ran-
dom-generated and real workload traces. The Data Classification
phase entails pre-processing of the simulation data to expose infor-
mation that represents the vital novel attributes of our model: bit-
location awareness, computation history, and value correlation.
Specifically, we classify output bits into five distinct classes that
represent the expected states of the sampled value of the register at
the output of a module. With these five classes we capture the
behavior of each bit in the output of a functional unit when operat-
ing at a scaled voltage. Ultimately, in the Model Generation phase
we develop error models that provide the probability with which
each output bit is expected to belong to one of these five classes
under a given operating condition, i.e., supply voltage level, opera-
tion type and bit location.

4. METHODOLOGY

4.1 Functional Unit Characterization

For our characterization we fully synthesize the integer and float-
ing point FUs of the OpenSPARC T1 core using the Synopsys
Design Compiler and the SAED90nm standard cell library. All
modules are 64-bit, consistent with the OpenSPARC T1 datapath.
We perform analog simulations of SPICE-level models of the stan-
dard cells in the netlists using the Synopsys VCS and HSIMplus
co-simulation tools. We simulate the modules after generating the
physical layouts, including clock tree synthesis when necessary
using the Synopsys IC Compiler and VCS/HSIMplus (which we
verified they provide faster simulation without loss of accuracy).

Due to the extremely high number of possible input combinations
and the excessive time requirements of analog simulations, we per-
form the simulations using semi-randomly generated inputs.
Assuming a FU that accepts two 64-bit operands, we randomly
generate a trace of N operand pairs by forming a 2D plane with the
x- and y-axis in the range [0, 264-1]. We then tile the plane into N
tiles by dividing each dimension into VN intervals. We randomly
choose one point within each tile, and consider its x-y coordinates
as the values of the two input operands of the FU. This method
results in a homogenous distribution over the 2D input space, guar-
antees that we cover the entire range of possible input operand val-
ues, and allows for value randomness, thus enables us to capture a
significant range of the operation behavior through the simulations.

When scaling the voltage of a FU its output is a function of the cur-
rent inputs and also the preceding operations’ inputs and outputs
(i.e., the computation history). This effectively means that we can-
not generate an accurate model with a trace of randomly generated
input operands, as this would represent a single “history” instance.
To solve this problem, after generating a trace using tiling, we cre-
ate a set of different permutations of all these inputs to emulate dif-
ferent history instances. Using this method we create 5-10
permutations of traces ranging from 2,025 to 10,000 operations,
and use them to feed transistor-level simulations of the components
we evaluate. To keep the simulation time within practical limits (a
few days per trace per component) we use the shorter traces to sim-
ulate highly-complex components, such as the floating-point units.
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FIGURE 1. Bit error rate for integer ops (arithmetic: solid
lines; bitwise: dashed) in analog simulation of a random trace.

For each component we determine the minimum possible clock
period that results in no errors at the nominal supply voltage (V44 =
1.2V) without considering process variation and wear-out. Then,
keeping the clock cycle time constant, we simulate each compo-
nent on a range of supply voltage levels from 0.5V to 1.2V (in
increments of 0.1V) using the same trace for each voltage level.

4.2 Data Classification

After collecting the analog simulation data, we classify the behav-
ior of each FU output bit. For each FU output bit, in addition to the
result computed for a given operation, all results of the operations
simulated prior to it are available in the simulation data. Our classi-
fication process exposes the history of past operations at each bit
location in this data. For each bit location in the output of a FU, the
values of the immediately preceding and current operations could
be described with four 1-bit descriptors: Past Observed (PO) corre-
sponds to the value of the bit for the preceding operation observed
through the analog simulation, Past Correct (PC) corresponds to
the expected (correctly computed) value of that bit, and similarly
Current Observed (CO) and Current Correct (CC) correspond to
the observed and correct bit values for the current operation.

These four 1-bit descriptors <PC, PO, CC, CO> form 24=16 dis-
tinct cases that correspond to all possible value combinations, e.g.,
case 3 is PC=0, PO=0, CC=1, CO=1. Each case ties the circuit’s
behavior on the current operation to the history of the immediately
preceding operation (we refer to this as History-1). Our experi-
ments indicate that incorporating History-1 is necessary and suffi-
cient for an accurate error model, and a longer history increases the
distinct events required for classification without providing signif-
icantly higher accuracy. Ultimately, we classify these 16 cases
under five main classes that capture the response of a given circuit
to voltage scaling at a given bit location (see Table 1):

* The correct class captures the instances where the circuit
meets timing and a correctly computed value is observed.

+ The previous observed class captures instances where the cir-
cuit missed timing and the latched value matches the observed
outcome of the immediately preceding operation.

* The previous correct class is similar to the previous observed
class, but the latched value matches the correct value of the
preceding operation.

» The glitch class captures the instances where a transition at the
output bit is unnecessary (the previous and the current opera-
tion’s correct bit values, and the previous observed bit value
are all the same), however a transition occurs and it is latched.

* Finally, the ambiguous class captures the instances where the
output is correct, but there is no way to know whether this is
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FIGURE 2. Bit error rate for floating point arithmetic
operations in the analog simulation of a random trace.

the result of a missed timing or correct operation (e.g. in case 0
we cannot distinguish between the circuit meeting timing vs.
observing the previous observed or the previous correct value).

To compute the probability of each class for a specific bit we use
the data from the classification process of the random traces. In
Section 5 we demonstrate that constructing the model using data
from the random traces is sufficiently accurate, while performing
per-application training provides negligible additional improve-
ments. This makes our model independent of the application it will
be applied on, i.e., after constructing a model for a specific module
no additional training is required for new applications.

4.3 Error Model Generation

We construct error models using two alternatives: decision trees,
and the direct derivation of the frequency of occurrence of each
case in Table 1 with the resulting error probability (b-HiVE).

4.3.1 Machine-Learning-Based Modeling

We derive error models by applying various machine learning tech-
niques from the Weka [6] library of statistical tools (C4.5 Decision
Trees, Logistic Regression, and Naive Bayes classification) on the
data collected from analog simulations of random traces. As the
accuracy was similar across the resulting models, we pick the deci-
sion tree models due to their superior interpretability.

For the decision tree algorithms, the dataset is split 80:20, where
80% of the data is used for training and 20% for testing. In order to
prepare the training data for modeling purposes, we perform a data
selection step that removes data that are part of the ambiguous
class (Section 4.2) since we cannot differentiate between correct
operation and timing error. After the selection, our training sets for
modeling purposes contain data related to the circuit level behavior
of the voltage-scaled FUs. Specifically, our training set contains
the operation type, bit position, voltage level and class information.
We exclude operand values from the training dataset as the result-
ing decision trees become very deep with highly complex branch-
ing, but provide only negligible increase in accuracy.

TABLE 1. Data Classification.

Class Timing Error Included Cases
Correct No 3,4,11,12
Previous Observed Yes 2,5,10,12
Previous Correct Yes 6,9
Glitch Yes 1,14
Ambiguous Unknown 0,7,8,15




The decision tree algorithm builds the tree based on normalized
information gain (change in entropy). At each point, the algorithm
tries to reduce entropy in the resulting branches. To control the
shape of the tree we modify a parameter that determines the mini-
mum number of instances per leaf node of the tree. We see that
varying this parameter does not affect the quality of our models,
and, hence, we keep a single value across all experiments.

We refer to our decision-tree-based model including History-1
information as History-1-DecTree (H1DT). We also evaluate an
alternative, NoHistory-DecTree (NHDT), which is constructed
without taking into account how the history of consecutive compu-
tations affects the outcome of the more recent one. We present a
comparison of the two models in Section 5. Our results show that
including History-1 in the model enhances its accuracy signifi-
cantly, supporting our claim that history correlation plays an
important role in the construction of accurate error models. Includ-
ing a deeper history improves the accuracy by at most 2.7%, hence
we do not consider history deeper than 1.

4.3.2 Frequency-of-Occurrence-Based Modeling

In addition to the decision trees, we consider the alternative method
of deriving the error model directly from the frequency of occur-
rence of each case in the analog simulation data of the random
trace. Similar to the HIDT and NHDT models, we evaluate a
model that excludes the ambiguous cases (Table 1) from the dataset
(b-HiVE is the resulting model), and a variation of the model that
classifies the ambiguous cases as correct ones (b-HiVE-NE).

Furthermore, we create a third variation, b-HiVE-<app>Trained,
which is a b-HiVE model trained on the analog simulation data of a
trace extracted from a real application workload. Ultimately, for
any model used, the behavior of each bit location in the output of a
FU is represented by the probability of four possible outcomes,
which are determined by the operation, bit location, and voltage

level: Pcorrect JrPprevCorrect + Pprevaserved + Pglitch =1

5. ANALYSIS

In this section we present the results of the functional unit charac-
terization and the analysis of the different models. We also demon-
strate the effectiveness of b-HiVE in comparison to alternative
error models from existing literature.

5.1 Hardware Characterization

Using the fully synthesized hardware modules and the random
input traces created through the process described in Section 4.1
we perform a series of simulations to characterize the behavior of
each component at scaled supply voltage. Figure 1 presents the bit
error rate (the percentage of incorrect output bits over the total

¢ 90% corr. @ 80% corr.
50%

70% corr. @ 60% corr. % 50% corr.

40%
30% \
20% \
10% k
0% X % = =
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
Voltage (V)

FIGURE 4. Bit error rate for 64-bit integer addition in the
analog simulation of a random trace with value correlation.
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FIGURE 3. Per-bit error rate for double-precision floating
point addition in the analog simulation of a random trace.

number of output bits in the simulation data) for the integer ALU
(add, move, and, or, xor) and the integer multiplier. Similarly,
Figure 2 presents the bit error rates for the floating point (FP)
adder, multiplier and divider.

The nominal supply voltage (V4q) for all components is 1.2V. We
do not present the results of simulations for the [0.1-0.4V] range as
we observe a complete breakdown of the circuit’s behavior. In both
Figures 1 and 2 it is clearly seen that different operations exhibit
vastly different error behavior. Hence, all prior modeling work that
treats all operations under the same lumped error rate will suffer
from inaccuracies. Logic and move operations, in particular,
exhibit a significantly smaller error rate than addition and multipli-
cation (e.g., move operations have practically no errors even for
0.5V). This is expected, as the critical paths excited for these oper-
ations are simpler, reducing the chances of timing errors.

Figure 3 illustrates the error behavior of each of the 64 individual
output bits of the FP adder. We observe that the exponent’s bits are
more resilient than the mantissa’s even at low voltages. This is an
interesting finding as it indicates that even though the exact num-
ber may be corrupted, the magnitude (exponent value) of the oper-
ation will likely remain correct down to 0.8V, and exhibit smaller
variation than the mantissa at 0.7-0.6V. Such behavior could be
exploited through hardware/software co-design to improve the
fault tolerance of applications.

To evaluate the effect of value correlation on the error rate, we gen-
erate controlled input vector traces for two integer ALU operations
(ADD and OR) that produce a specific correlation rate between
outputs. For example, 80% value correlation means that the correct
results of two consecutive operations have on average 80% of their
bits be identical, while the remaining 20% differ. Our random trace
generation algorithm produces an 80% value correlation by flip-
ping an 80/20 biased coin for each output bit to decide if the bit
remains the same or switches value, selects operand inputs that
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FIGURE 5. Bit error rate for 64-bit bitwise OR in the analog
simulation of a random trace with value correlation.
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would produce that output had the operation been correct, and then
includes this operation in the trace and repeats the process. This
trace is then simulated in our analog simulation infrastructure, and
we observe the output bits of each operation to calculate the bit
error rate. Figures 4 and 5 present the results of these simulations
for a range of value correlation levels, and clearly demonstrate that
higher value correlation leads to significantly smaller error rate.
This justifies and highlights the importance of incorporating value
correlation into the error modeling of functional units.

5.2 Evaluation of b-HiVE

We evaluate five alternative error models that we developed:
NHDT, H1DT, b-HiVE, b-HiVE-NE, and b-HiVE-<app>Trained
(Section 4.3). We evaluate these models on a trace from a JPEG
image decoding kernel. We define the quality of each model using
the average absolute error rate difference metric (AAERD), calcu-
lated using the formula below, where Wy |, ; is the value (0 or 1) of
bit i for model X at voltage ¥, and S is the analog simulation:

z |WX,V,i7WS,1,2,i|7 Z s v.i=Ws 12
[#ops in trace| [#ops in trace]|
Z trace ops trace ops
|#bit positions||

AAERD, =y bild
X %: [#voltage levels|

Figure 6 presents a comparison of the five models for an execution
trace of the JPEG decoder kernel. NHDT achieves an AAERD of
8%. By taking history correlation into account, HIDT’s accuracy
improves by 3x and its AAERD drops to 2.7%. Thus, history corre-
lation is an important factor in error modeling. A designer’s inter-
pretation of a 2.7% AAERD is that the impact of incorporating a
longer history into the model, or even the ideal case of infinite his-
tory (analog simulation), could improve accuracy by only 2.7%.
Thus, History-1 provides sufficient accuracy and need not be
extended. b-HiVE is an error model of almost identical accuracy to
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FIGURE 8. Per-bit error rate of 64-bit integer addition in the
analog simulation of a random trace.
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FIGURE 7. Average absolute bit error rate difference over
the analog simulation of a random trace.
the decision tree but significantly simpler, thus complex machine
learning techniques are not justifiable. We also evaluate b-HiVE-
NE, a model trained on the full raw data by including the ambigu-
ous cases as correct. b-HiVE-NE exhibits 52% lower accuracy than
b-HiVE, emphasizing the importance of detecting and excluding
the ambiguous cases. Finally, b-HiVE-jpegTrained, derived by
training b-HiVE directly on the JPEG trace, improves accuracy by
just 0.7%, supporting our argument that a generic FU-based model
trained on random traces can work well for real-world applications.

5.3 Comparison to Previous Error Models

As the majority of previous work focuses on integer addition and
multiplication modules, there is no accurate model for bitwise logic
or FP operations. The variability in error rates for different opera-
tions (Figures 1 and 2) clearly shows that using the model of one
operation to predict the behavior of another could lead to signifi-
cant inaccuracies. Figure 7 compares the accuracy between the
analog simulation of random traces and the predictions of 5 mod-
els: b-HiVE, three error models from EnerJ [14], and the model
used in Lane Decoupling [10] with its error rate uniformly distrib-
uted among the bits. For the bitwise logic operations that Lane
Decoupling presents no model, we apply the integer add model as
it exhibits the lowest error. We cannot offer a comparison with
scaled FP units as it was not presented in any of the above works.
However, we present the accuracy of b-HiVE as a reference point.

b-HiVE exhibits at least 5x higher accuracy than competing error
models (EnerJ-SingleBit and LaneDecoupling for the xor operation
are the closest any of these models ever gets to b-HiVE), and up to
17x lower accuracy for LaneDecoupling (integer mul) and 10x for
EnerJ (integer add). The gap between these models and b-HiVE is
even more pronounced for the logic operations. More importantly,
b-HiVE is within only 1-3% of comprehensive analog simulations.

Another limitation of previous error models is the use of scalar val-
ues to characterize the behavior of all bits at a voltage level. Fig-

“-EnerJ-SingleBit =-EnerJ-RandomValue -*‘EnerJ-PreviousValue

Uniform #LaneDecoupling “*ph-HiVe
50 :
|
40 3
|
< 30 ¥
3
a 20 7
10 ‘J
» . 2 = =
0
0.5 0.6 0.7 0.8 0.9 1 11 1.2

Voltage (V)

FIGURE 9. PSNR (higher is better) of the decoded JPEG
image under various error models.
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ures 3 and 8 expose the problem of this approach, clearly showing
that the error rate across bits can have significant fluctuations.
Error models should capture this behavior to accurately evaluate
design techniques that may impact the fidelity of a module.

5.4 Impact on Application Qutput Quality

The choice of error model has a measurable and visible impact on
the quality of the final output of an application. Figure 9 presents
the peak signal-to-noise ratio (PSNR) of the output of a JPEG
image decoder when simulated using 6 error models across volt-
ages. Figure 10 presents the different outputs of simulating the
JPEG image decoder at 1.0V under the b-HiVE and Lane Decou-
pling [10] models, where we circle the additional artifacts that the
Lane Decoupling model introduces. These figures demonstrate that
previous models may overestimate or underestimate the error rate,
resulting in mispredicted behavior.

6. CONCLUSIONS

Error models are at the core of the design of power efficient and
reliable systems, hence their accuracy is of paramount importance.
We show that awareness of bit location, history correlation and
value correlation play an important role in building accurate error
models, all of which have been largely ignored until now. We pro-
pose b-HiVE, a detailed error model for integer, bitwise logic, and
FP units at bit-level granularity that incorporates history and value
correlation, leading to substantially higher accuracy over typically
used error models. b-HiVE is robust and application independent,
hence it can be used with any application, and can be easily incor-
porated in architectural simulators to extract quality and power
measurements orders of magnitude faster than full analog simula-
tion at the cost of only 1-3% loss in accuracy.
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