
Edge Importance Identification for Energy Efficient Graph Processing

S M Faisal∗, G. Tziantzioulis†, A. M. Gok†, N. Hardavellas†, S. Ogrenci-Memik† and S. Parthasarathy∗

∗Dept. of CSE, The Ohio State University, Columbus, OH, USA

Email: {faisal, srini}@cse.ohio-state.edu
†Dept of EECS, Northwestern University, Evanston, IL, USA

Email: {getziadz, amg}@u.northwestern.edu,{nikos, seda}@northwestern.edu

Abstract—Modern graphs are large, often containing billions
of nodes and edges that demand huge amount of processing
for analysis purposes. The algorithms processing these graphs
often run for long time and consume substantial amount of
energy. However, not all edges in the graphs are equally
important. Some edges play critical role in maintaining the
community and other interesting structures in the graph, while
the rest are less important for analysis. Identifying edges
as important and unimportant allows one to apply elastic
fidelity computing when processing edges of low importance,
hence saving significant amount of energy while processing
large graphs. In this paper we propose a novel technique for
identifying important edges in a graph using a fast method
that exploits locality sensitive hashing. We then propose a
framework for energy-efficient computing that applies elastic
fidelity computing when processing edges of low importance
and applies full fidelity computing when processing important
edges. This allows the framework to deliver good results
while saving energy when processing a large number of low-
importance edges. Our proposed technique reduces the power
consumption by 3–30% while still producing results that are
within acceptable range of the full-accuracy results.

Keywords-Graph; Energy Efficient Computing; Algorithm;

I. INTRODUCTION

Power is now a first-class constrain on the design process

for large scale computing solutions as well as mobile sys-

tems [1]. This is also due to the increasing power density

in modern computers and the Dark Silicon [2] problem—

limitations imposed by power on device scaling. Tradition-

ally computers guarantee the correctness of computation by

maintaining a conservative, large voltage guard band as well

as timing slack [3] that result in high energy consumption.

Various techniques have been proposed by the research

community to improve energy efficiency [4], [5], [6] that

withstand occasional circuit errors while providing correct

execution to the end user. More aggressive approaches

propose approximate computing that rely on voltage scaling,

i.e., reducing the operational voltage; leading to a narrow

voltage guard band and random bit errors in the compu-

tation. These approaches champion the idea of allowing

(not correcting) bit errors in computations and letting the

applications take care of them as necessary. The idea is to

trade off accuracy for energy savings [7], [8], [9].

With increasing popularity of social networks, large

graphs with millions of nodes and edges have become

commonplace. Various techniques have been proposed for

processing large graphs including ranking [10] and clus-

tering [11]. Most of the graph processing algorithms are

complex and consume significant amount of power when

applied on large graphs. However, not all edges in a graph

are equally important for preserving the structural properties

of the graph [12]. Hence, the effect of voltage-scaled error-

prone computing on structurally important edges is more

severe than that on the remaining edges of the graph. This

enables the variation of computational fidelity across edges

according to their importance. We apply this technique by

first categorizing the edges of the graph into two categories,

important and unimportant, using a fast, efficient algorithm.

Once the edges are categorized, we apply elastic fidelity

computing to process the unimportant edges and full fidelity

computing on edges that are important. The number of edges

categorized as important is controlled by a parameter set

by the user, enabling customization based on knowledge of

the graphs. Our proposed techniques can be easily extended

to specialized graph processing frameworks like GraphLab

[13] and Global Graphs [14]. To the best of our knowledge,

we are the first to propose categorizing graph edges into

important and unimportant for the purpose of applying

energy-efficient computing when processing large graphs.

Natural candidate techniques for selecting important edges

are various edge sampling techniques found in current

literature. However, sampling or sparsification lose struc-

tural information about the graph, while marking edges as

important (unimportant) allows us to preserve the structural

information intact while applying smart techniques to save

energy when processing less important edges. Our key

contributions are:

• We propose a fast and effective framework for identi-

fying important edges in a graph.

• We analyze local and global approaches for identifying

edge importance.

• We apply elastic fidelity computing in graph processing

on the basis of edge importance to save energy while

preserving output quality.

• We experimentally evaluate our techniques with various

graph processing algorithms.

II. RELATED WORK

Considerable work has been done in the area of detecting

and correcting timing errors that stem from under-volting or

over-clocking of functional units. Razor [4], [5] is a register

transfer level (RTL) technique that provides a mechanism

for detecting and correcting timing errors while operating in

sub-nominal voltage. CAD techniques have been proposed

in recent years that provide graceful degradation of modules

under voltage scaling or over-clocking along with correction

for the occasional timing errors [15], [7].

Recent research has explored the idea of approximate

computing that allows errors to occur in certain regions in

a program via aggressive voltage scaling. A programming

framework and architecture were proposed recently [8],

[9] for marking individual instructions as imprecise and

executing them in voltage-scaled functional units. Work in

this space has relied on basic fault injection error models

that perform single bit flips at the output with uniform

distribution [9], or select random or previously seen values

for the entire output [9]. Subsequent works [8] rely on

uniform bit-error models with per-component probabilities.

Most of these works have explored various scientific and

multimedia applications.

A large body of research exists in the area of graph

sparsification. Approaches proposed based on sampling [16].

Problems of edge filtering [17] and complex network back-

bone detection [18] have been studied where the focus is to

construct a spanning tree-like network backbone rather than

to preserve community structure in a graph. Work on Graph

Sampling samples nodes along with edges of the graph.

Maiya et al. [19] proposed to find representative subgraphs

preserving community structure based on algorithms for

building expander-like subgraphs of the original graph.

None of these techniques, however, considers the impor-

tance of edges for maintaining community structure in the

graph. To the best of our knowledge, we are the first to

explore the idea of identifying important edges and subse-

quently applying low-energy computation when processing

unimportant edges to save energy.

III. METHODS

Graphs in contemporary applications have become mas-

sive in size, and usually contain billions of edges. However,

their edges have varying importance with respect to main-

taining crucial and interesting properties of the graph. For

example, when it comes to capturing community structures

in the graph, not all edges have an equally important role

in maintaining the community structures. We propose tech-

niques that efficiently mark edges as important (unimportant)

based on vertex similarity. Satuluri & Parthasarathy [12]

proposed a graph sparsification method that takes vertex

similarity into account and sparsifies graphs for scalable

clustering. In a similar fashion, we exploit similarity between

vertex neighborhoods to identify edges that are important for

preserving the community structure in the graph.

Key intuition behind the method is: if two vertices of an

edge share a lot of common neighbors, it is very likely that

the edge belongs to a community structure in the graph.

On the other hand, if the two endpoints of an edge have no

common neighbors, it is more likely that the edge in question

is a bridge between two communities, hence playing a less

important role for maintaining communities in the graph.

Based on this intuition, we propose our method which

computes vertex similarities between the endpoints of each

edge in order to assign an importance score to the edge.

After this step, we can mark low scoring edges as less

important for maintaining the graph structure.

A. Requirements and Intuition

We propose to use a similarity-based categorization of

edges. The reason behind using a similarity-based method

is to ensure the following properties:

• Edges that are important for preserving the clusters in

the graph should be marked as important.

• Applying the proposed computing techniques should

produce results close to ground truth (obtained by exe-

cuting the respective algorithm on the original graph).

• The identification process itself should be extremely

fast in order to be practically applicable to massively

large networks and graphs as a preprocessing step.

As our goal for identifying important edges is based on the

idea of preserving cluster structure in the graph, we prefer

to retain intra-cluster edges to inter-cluster edges.

Various edge centrality measures have been used pre-

viously to identify edges in sparse parts of the graph.

For example, the edge betweenness centrality [20] of an

edge. By definition, inter-cluster edges happen to have a

high betweenness centrality compared to intra-cluster edges.

This seems to be a logical way of identifying important

edges in the graph. However, edge betweenness centrality is

prohibitively expensive, requiring O(mn) time [20] where

m is the number of edges and n is the number of nodes

in the graph. We use a simple heuristic for identifying the

important edges in the graph.

B. Similarity based identification heuristic

An edge (i, j) is likely to be intra- (inter-) cluster if

vertices i and j have neighborhoods with high (low) overlap.

To measure the overlap between neighborhoods of nodes,

we use Jaccard similarity. Let Adj(i) and Adj(j) be the

adjacency list of nodes i and j, respectively. Then the simi-

larity between Adj(i) and (Adj(j), referred to as similarity

between i and j henceforth, is:

Sim(i, j) =
|Adj(i) ∩Adj(j)|
|Adj(i) ∪Adj(j)| (1)

(a) Original Graph (b) Important edges (solid) identified using
Global Method

(c) Important edges (solid) identified using
Local Method

Figure 1. Identification of Important edges using Global and Local approaches

C. Global vs. Local Identification

Once the edges of the graph have been ranked based on

their similarity scores, there are two ways importance can be

determined for each edge. A simple method is to mark the

top ranked edges as important. The number of edges marked

as important depends on a user defined parameter. We call

this method Global Identification because the approach does

not take into account the degree

This approach performs poorly when different clusters

have diverse densities – marking more edges of large, dense

clusters as important while marking all edges of smaller

clusters as unimportant [12]. The alternative to the Global

method is the Local strategy that is robust to the varying

densities of clusters in the graph. Local identification method

does not employ a global threshold; Rather, for each node

i with degree di, the top f(di) = dei edges incident to

i are marked as important. Here e(e < 1) is a local

identification exponent that adapts to the varying densities

across varying parts of the graph and affects the global

identification ratio. Smaller values of e results in a graph

with fewer edges marked as important and vice versa. In

this approach sorting and thresholding is applied to each

vertex separately, allowing for the robustness necessary to

accommodate varying densities across clusters in the graph.

Note that in the local approach, at least one edge incident on

each node is marked as important. The algorithm for local

identification is given in Algorithm 1.

Figures 1(b) and 1(c) show the effect of applying the

global and local approaches, respectively, on the example

graph in Figure 1(a). The local approach does a much better

job while the global approach marks all edges in the low

density cluster as unimportant.

D. Fast Similarity Computation

The algorithms proposed above, under certain assump-

tions, have complexity O(n.d2avg) where davg is the average

degree of the graph [12], making it a prohibitively expensive

process. Hence, a fast similarity computation is desirable.

One popular method for efficiently computing approximate

Jaccard similarity between two sets is minwise hashing [21].

Local Identification using Minwise Hashing

In this approach, k linear permutations are generated by

Algorithm 1 Local Importance Identification

Input: Graph G = (V,E), Local Identification exponent e

Output: Edge Identified Graph, Gidentified

Gidentified ← G

for each vertex i ∈ V do

Let di be the degree of i

Let Ei be the set of edges incident to i

for each edge e = (i, j) in Ei do

e.sim = Sim(i, j) according to Eq. 1

end for

Sort all edges e ∈ Ei by e.sim

Mark the top dei% edges incident to i in Gidentified

as important

end for

Mark all remaining edges as unimportant

return Gidentified

generating k triplets (a, b, P). Then a length k signature for

each node is computed by minhashing each node k times,

resulting in a hash table of size n∗k for a graph with n nodes.

For an edge (i, j), we compare the minhash signatures of

nodes i and j, counting the number of matching minhashes.

Note that the similarity of an edge is proportional to the

number of matches. Thus, we can sort edges incident to a

node i by the number of matches of each edge. Moreover,

because the number of matches is limited to k, we can use a

linear time counting sort algorithm to sort the edges. After

sorting, we mark the top dei edges as important for node i

with degree di.

This reduces the time complexity of similarity based

identification to O(km), linear in the number of edges [12].

IV. COMPUTING MODEL

Labeling the edges of a graph as important versus unim-

portant allows us to apply energy-efficient computation in

subsequent steps of graph processing. We describe our pro-

posed model for energy efficient computing in the following

secgtion.

A. Energy-Efficient Computing Architecture

Voltage Over-Scaling (VOS) has been a popular technique

for reducing power consumption, where the supply voltage

of a component or the entire system is reduced in order to

gain quadratic power savings. However, the savings come

at the cost of loss of accuracy due to timing errors in the

targeted component. Initial proposals of VOS were bundled

with error detection and correction schemes [22] in order to

guarantee zero error, limiting scaling and the potential power

benefits. Recently, researchers embraced errors allowing

them to propagate to the end result of computations for al-

gorithms that exhibit inherent fault-tolerance [8], [9],thereby

enabling aggressive voltage scaling.

We propose to use an approximate computing architecture

that resembles the one proposed by Esmaeilzadeh et al. [8].

The key idea is to double the set of functional units (FUs) so

that one set operates on precise instructions while the other

operates on imprecise instructions. Note that using only one

set of FUs and varying operational voltage is not a feasible

option for the following reasons:

• Precise and imprecise computations are usually finely

interleaved in real algorithms.

• There is a penalty of 75-150 µs for switching supply

voltage levels [23]. Frequent switching of voltage levels

may extend the computation time and eliminate any

potential power savings.

Hence, we assume an architecture that allows low-voltage

computation via additional copies of functional units, along

with support for the execution of algorithms with specific

precision guarantees.

B. Error Models for VOS Architecture

Energy efficient computing via voltage scaling requires

thorough assessment with an accurate error model in order

to correctly explore the accuracy-power trade-off. Various

error models have been used previously to correlate the

energy savings to the output quality of applications. The

most commonly-used models are simple and based on single

bit-flip probabilities, uniform distribution models, or random

values [8], [9], [7]. However, these models are not detailed

enough and cannot fully capture the error behavior of FUs

[24]. Tziantzioulis et al. [24] show that different FUs and

even different bit locations of the same operation exhibit

significantly different error behaviors. As a result, [24]

proposed b-HiVE, a comprehensive and accurate error model

that is applicable to a wide-range of FUs and takes the bit

location, unit type and value correlations into consideration

– increasing the accuracy of the models quite significantly.

In our evaluation we use the C++ software library de-

veloped by the authors of b-HiVE [24] to emulate the

error behavior of voltage over-scaled FUs that execute the

imprecise computations.

C. Graph Processing Model

As described in prior sections, we preprocess graphs in or-

der to classify edges as important and unimportant. Then we

execute the graph processing algorithms while apply energy-

efficient approximate computing when processing edges that

are marked unimportant by our identification algorithm.

Computations involving important edges, however, are ex-

ecuted precisely. One benefit of our proposed technique is

that the fast identification algorithm is executed once for a

graph as a preprocessing step and the information is used

for all future executions under the proposed paradigm.

V. EXPERIMENTAL EVALUATION

We compare the outputs of our proposed techniques

with the outputs produced by the precise execution of the

respective algorithms. To obtain energy savings, we apply

the identification algorithm as a preprocessing step and then

apply modified versions of the graph processing algorithms.

The modified algorithms vary from the original versions

in that they perform computations on voltage over-scaled

functional units when processing an unimportant edge. The

voltage over-scaled arithmetic operations are modeled using

the b-HiVE library [24]. The output quality of applications

is reported using specific measures that are typical for the

respective applications.

A. Applications

Regularized Markov Clustering (RMCL): RMCL [25]

is an extension of Markov Clustering (MCL) [26] which is

based on flow distributions in a stochastic flow matrix. Brief

descriptions of MCL and RMCL follow:

• Markov Clustering (MCL) [26] is based on the

iterative application of two operations on the transition

probability matrix (stochastic flow matrix) M of the

graph. The algorithm is as follows:

Algorithm 2 Markov Clustering (MCL)

1: // M is the stochastic flow matrix, prepared using the

adjacency matrix A

2: repeat

3: M := MExpand := Expand(M)

4: M := Inflate(M, r)

5: M := Prune(M)

6: until M Converges

Here Expand(M) is M ×M . Inflate(M, r) corresponds

to raising each element of M to its r-th power and

normalizing the columns to sum to 1. Here r is the

inflation parameter (r > 1) and is typically set to 2.

Prune(M) prunes away smaller values (relative to other

values in respective columns) in each column of matrix

M . The remaining values are re-normalized to maintain

the column stochastic property.

• Regularized MCL (RMCL) was proposed by Satuluri

et al. [25] as an extension of MCL in order to address

a major limitation of MCL—imbalanced clustering.

RMCL does so by regularizing (or smoothing) the flow

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

F
-
S
c
o
r
e

Voltage

RMCL F-Score (e=0.5)

Email-16bits

Email-32bits

Email-48bits

Email-52bits

Email-64bits

Astro-16bits

Astro-32bits

Astro-48bits

Astro-52bits

Astro-64bits

(a) Local, e=0.5 (default)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

F
-
S
c
o
r
e

Voltage

RMCL F-Score (e=0.3)

Email-16bits

Email-32bits

Email-48bits

Email-52bits

Email-64bits

Astro-16bits

Astro-32bits

Astro-48bits

Astro-52bits

Astro-64bits

(b) Local, e=0.3 (fewer edges marked important)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

F
-
S
c
o
r
e

Voltage

RMCL F-Score (Email)

Local-16bits

Local-32bits

Local-48bits

Local-52bits

Local-64bits

Global-16bits

Global-32bits

Global-48bits

Global-52bits

Global-64bits

L-Spar

G-Spar

(c) Email-Enron

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

F
-
S
c
o
r
e

Voltage

RMCL F-Score (r=0.25)

Email-16bits

Email-32bits

Email-48bits

Email-52bits

Email-64bits

Astro-16bits

Astro-32bits

Astro-48bits

Astro-52bits

Astro-64bits

(d) Global, r=0.25 (default)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

F
-
S
c
o
r
e

Voltage

RMCL F-Score (r=0.1)

Email-16bits

Email-32bits

Email-48bits

Email-52bits

Email-64bits

Astro-16bits

Astro-32bits

Astro-48bits

Astro-52bits

Astro-64bits

(e) Global, r=0.1 (fewer edges marked important)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

F
-
S
c
o
r
e

Voltage

RMCL F-Score (Astro)

Local-16bits

Local-32bits

Local-48bits

Local-52bits

Local-64bits

Global-16bits

Global-32bits

Global-48bits

Global-52bits

Global-64bits

L-Spar

G-Spar

(f) Astro-Ph

Figure 2. RMCL performance

distributions with respect to neighbors by changing the

Expand (M := M ×M) step of MCL to Regularize

(M := M × MG) step where MG is the canonical

transition matrix of the graph.

PageRank: is based on a “random surfer” who starts on

a random web page and clicks on links and at some point

starts on another random page—a phenomenon commonly

known as “random walk with restart” [10]. The probability

that the random surfer visits a page is its PageRank. For a

graph G = (V,E) where V is the set of N vertices and E is

the set of directed edges, the PageRank vector p is a (N×1)

vector computed iteratively using the following equation:

pn+1 = cWT pn + (1− c)pn (2)

where c is a dumping factor (usually set to 0.85). W is

the row normalized matrix of adjacency matrix A.

B. Datasets

We run our experiments on a real-world graph from

the SNAP dataset1. For all of these results, we keep the

identification parameters at their default value, i.e., fast, ap-

proximate local identification with 30 hashes for computing

approximate similarity and exponent parameter set to 0.5.

1http://snap.stanford.edu/data/index.html

Graph Local Identification Global Identification

Email-Enron 0.142s 0.137s

Astro-Ph 0.138s 0.125s

Table I
EDGE IDENTIFICATION TIME

Hence, for each node with degree d, we mark
√
d of its edges

as important and the remaining d−
√
d edges as unimportant.

We also evaluate the performance by limiting the energy-

efficient computing to certain ranges of bits: low 16, low

32, low 48, low 52 (mantissa) and all 64 bits. This allows

us to evaluate the resilience of low-order bits in computation.

All experiments are run on the Email-Enron dataset with

36692 vertices and 183831 edges, and the Astro-Ph dataset

with 17903 vertices and 196972 edges. The time taken for

the identification of edges is given in Table I.

C. RMCL Evaluation

We first show the results for the graph clustering algorithm

in Figure 2. Figure 2(a) shows the result when the identifi-

cation parameter e is set to the default value 0.5. Note that

the f-score is computed with respect to the output produced

by the precise version of the algorithm. Additionally, during

the calculation of the average f-score, we exclude singleton

clusters resulting in maximum f-score of 0.9232. As we

see in the figures, when errors are limited to the low 32

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500

F
-
S
c
o
r
e

Top k

Pagerank F-Score (1.0v)

Email-16bits

Email-32bits

Email-48bits

Email-52bits

Email-64bits

Astro-16bits

Astro-32bits

Astro-48bits

Astro-52bits

Astro-64bits

(a) Voltage 1.0V

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500

F
-
S
c
o
r
e

Top k

Pagerank F-Score (0.8v)

Email-16bits

Email-32bits

Email-48bits

Email-52bits

Email-64bits

Astro-16bits

Astro-32bits

Astro-48bits

Astro-52bits

Astro-64bits

(b) Voltage 0.8V

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500

F
-
S
c
o
r
e

Top k

Pagerank F-Score (0.5v)

Email-16bits

Email-32bits

Email-48bits

Email-52bits

Email-64bits

Astro-16bits

Astro-32bits

Astro-48bits

Astro-52bits

Astro-64bits

(c) Voltage 0.5V

Figure 3. Pagerank performance at different operational voltages

bits of the floating point computations, we do not see any

difference in the output quality. However, the quality starts

dropping when we allow errors beyond the low 32 bits. Yet,

as long as errors occur within the low 52 mantissa bits, we

see quite graceful degradation as opposed to a significant

drop in quality. For all 64 bits, however, going below 1.0V
significantly affects the results.

Figure 2(a), 2(b), 2(d) and 2(e) show the impact of the

identification parameter e (r) on the quality of RMCL out-

put. We see the same trend across all settings, indicating that

the identification parameter does a good job in identifying

the most important edges so that the quality of the clustering

algorithm is stable even when we set the parameter value

to e = 0.3 (r = 0.1), marking most of the edges as

unimportant. This gives us confidence that the identification

algorithm is able to mark the most critical edges as important

leading to good output quality.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

F
-
S
c
o
r
e

Voltage

RMCL F-Score (Agnostic)

Email-16bits

Email-32bits

Email-48bits

Email-52bits

Email-64bits

Astro-16bits

Astro-32bits

Astro-48bits

Astro-52bits

Astro-64bits

Figure 4. RMCL Performance for agnostic error injection

In Figure 4 we show the performance of RMCL when low

voltage operation is applied across all edges irrespective of

their importance. As shown in the chart, when errors are

present in all 64 bits of computation, the agnostic setting

crashes below 0.8V . This result shows the inherent resilience

of the application. However, it also shows that an agnostic

approach is not safe as the algorithm crashes when we go

below 0.8V .

Comparison with Sparsification

In Figure 2(c) we show the performance for identification

using local and global methods as well as results when we

use local and global sparsification approaches to reduce the

number of edges from the graph. We first apply local/global

sparsification on the graph with respective default parameter

values and apply RMCL on the sparsified graph. Note that

sparsification reduces the number of edges in the graph,

hence the processing is faster. However, as it is evident in

Figures 2(c) and 2(f), removing edges impacts the quality

of clustering. For example, applying local sparsification and

then RMCL causes the F-Score of RMCL to drop from 0.908

to 0.715 which is less than what our proposed framework

can achieve even at 0.5V when errors are limited to the

low 48 bits, or at 0.9V when errors are limited to the

mantissa bits. The impact is even more severe for the global

sparsification case where our proposed methods achieve

better performance even at 0.5V when errors are within the

low 52 mantissa bits of the FP computation. The effect is

more severe on the Astro-Ph dataset as shown in Figure 2(f).

The application of local and global sparsification causes the

F-Score to drop from 0.946 to 0.715 and 0.475, respectively.

For this dataset our proposed methods can outperform the

local sparsification method at 0.5V when errors are limited

to the low 52 mantissa bits of the FP computation.

D. PageRank Evaluation

Figure 3 shows the performance of the PageRank algo-

rithm at different operational voltage levels. To measure the

quality of PageRank, we compare the top k ranked pages

for any given setting with that of the precise top k for a

given value of k. We report F-Score for performance. We

see that performance degrades below 1.0V when errors are

allowed in all 64 bits of computation. However, when errors

are limited to the low 48 bits, even at voltage as low as 0.8V
we see results with f-score above 0.8. Another interesting

observation is when errors due to energy-efficient computing

are limited to the low 32 bits, there is virtually no impact on

the output quality. This is very promising because the low-

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

N
o
r
m
a
l
i
z
e
d

P
o
w
e
r

Voltage

RMCL Normalized Power

Email-(e=0.5)

Email-(e=0.3)

Email-(e=0.7)

Astro-(e=0.5)

Astro-(e=0.3)

Astro-(e=0.7)

(a) RMCL Normalized Power (Local)

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

N
o
r
m
a
l
i
z
e
d

P
o
w
e
r

Voltage

RMCL Normalized Power

Email-(e=0.5)

Email-(e=0.3)

Email-(e=0.7)

Astro-(e=0.5)

Astro-(e=0.3)

Astro-(e=0.7)

(b) RMCL Normalized Power (Global)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

N
o
r
m
a
l
i
z
e
d

P
o
w
e
r

Voltage

Pagerank Normalized Power

Email-(e=0.5)

Email-(e=0.3)

Email-(e=0.7)

Astro-(e=0.5)

Astro-(e=0.3)

Astro-(e=0.7)

(c) Pagerank Normalized Power

Figure 5. RMCL & Pagerank power consumption using the proposed framework

order bits show substantial resilience to random bit errors.

E. Power Savings

In this section we provide an estimation of power savings

when deploying our proposed framework. In order to get

instruction counts based on precise/imprecise modifiers, we

use a modified version of Gem5 [27] that supports our mark-

ing of instructions and schedules instructions based on their

precision level. To compare the power consumption of our

proposed scheme against a base architecture we used McPat

[28] to calculate the power consumption of the functional

units. Simulations on Gem5 are time and resource intensive.

Hence, to get the approximate analysis for larger graphs,

we use Gem5 simulation along with McPat on a small,

synthetic graph and then use the information of respective

graphs to extrapolate the power consumption numbers. Thus,

these numbers are an approximate analysis of the power

consumption. Note that the marking of instructions remains

the same for Gem5 simulation. We just extrapolate based on

the number of edges and the precise/imprecise instruction

ratio.

Figure 5 shows the power consumption for RMCL on

our proposed framework. We show the effect of local vs

global identifications in Figures 5(a) and 5(b). We see

power savings in the range of 3–6% for these two graphs.

As we use off-the-shelf implementation of RMCL for our

experiments, we can mark only 7–8% of total FP operations

as imprecise whereas for PageRank we can mark 70%

as imprecise. Given only 7% FP operations marked as

imprecise, our proposed techniques can still save more than

3% power consumption. We are confident that a more careful

implementation of RMCL would result in more power sav-

ings. Figure 5(c) shows the normalized power consumption

of the PageRank algorithm for the proposed framework. Our

proposed methods can offer significant power savings while

providing high-quality results (see voltage levels 0.9 and

0.8 at Figure 3). When errors are limited to the low 48 bits,

using our approach at 0.9 and 0.8 volts we can save 16.93%

and 21.5% of power, respectively, compared to the base

architecture. Moreover, when errors are limited to the low

32 bits, we can go all the way down to 0.5V with PageRank,

saving more than 30% in power consumption. This can

provide significant energy and cost savings in large scale

deployments. An important attribute of controlling the level

of power savings vs quality is the identification parameter

e. A lower e value (i.e., e = 0.3) leads to identification of

fewer edges as important, thus reduces power consumption,

whereas for larger values (i.e., e = 0.7) we identify more

edges as important, and thus increase power consumption.

VI. CONCLUSION

In this paper we propose a novel framework for energy-

efficient graph processing. We propose fast and efficient

techniques to classify graph edges as important and unim-

portant with respect to the edge’s role in preserving the

community structure in the graph. To this end we employ

a fast minwise hashing technique to measure the similarity

of the vertices at the endpoints of each edge. Based on this

similarity we rank edges and then identify a user-defined

fraction of them as important. We propose and evaluate two

approaches: global and local identification. We show that

the local approach is more effective for real graphs where

the community sizes vary substantially, as the global ap-

proach identifies globally without taking vertex degrees into

account. Our proposed technique allows the user to select

the fraction of edges that should be marked as important.

Finally, once edges are identified at a preprocessing step,

the graphs can be processed using our proposed paradigm

where energy-efficient computing is applied across edges

that have been marked as unimportant. Our experimental

evaluation shows that our proposed framework can provide

significant power savings while preserving quality of output

during large scale graph processing.

ACKNOWLEDGMENT

This work is supported by NSF grants CCF-1218768,

CCF-1453853 and CCF-1217353.

REFERENCES

[1] T. Mudge, “Power: A first-class architectural design con-
straint,” Computer, vol. 34, no. 4, pp. 52–58, Apr. 2001.

[2] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger, “Dark silicon and the end of multicore
scaling,” in 38th ISCA, ser. ISCA ’11. New York, NY, USA:
ACM, 2011, pp. 365–376.

[3] V. J. Reddi and M. S. Gupta, Resilient Architecture Design
for Voltage Variation, ser. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2013.

[4] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge,
“Razor: A low-power pipeline based on circuit-level timing
speculation,” in IEEE/ACM MICRO, 2003, pp. 7–18.

[5] S. Das, S. Member, D. Roberts, S. Member, S. Lee, S. Pant,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “A self-
tuning dvs processor using delay-error detection and correc-
tion,” IEEE Journal of Solid-State Circuits, vol. 41, p. 2006,
2005.

[6] E. Krimer, P. Chiang, and M. Erez, “Lane decoupling for
improving the timing-error resiliency of wide-simd architec-
tures,” SIGARCH Comput. Archit. News, vol. 40, no. 3, pp.
237–248, Jun. 2012.

[7] J. Sartori, J. Sloan, and R. Kumar, “Stochastic computing:
Embracing errors in architectureand design of processors and
applications,” in 14th International Conference on CASES,
ser. CASES ’11. New York, NY, USA: ACM, 2011, pp.
135–144.

[8] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Ar-
chitecture support for disciplined approximate programming,”
SIGPLAN Not., vol. 47, no. 4, pp. 301–312, Mar. 2012.

[9] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman, “Enerj: Approximate data types
for safe and general low-power computation,” in PLDI ’11.
New York, NY, USA: ACM, 2011, pp. 164–174.

[10] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pager-
ank citation ranking: Bringing order to the web.” Stanford
InfoLab, Technical Report, November 1999.

[11] S. Parthasarathy and S. M. Faisal, “Network clustering,”
in Data Clustering: Algorithms and Applications, 2013, pp.
415–456.

[12] V. Satuluri, S. Parthasarathy, and Y. Ruan, “Local graph
sparsification for scalable clustering,” in ACM SIGMOD, ser.
SIGMOD ’11. New York, NY, USA: ACM, 2011, pp. 721–
732.

[13] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein, “Distributed graphlab: A framework
for machine learning and data mining in the cloud,” Proc.
VLDB Endow., vol. 5, no. 8, pp. 716–727, Apr. 2012.

[14] S. M. Faisal, S. Parthasarathy, and P. Sadayappan, “Global
graphs: A middleware for large scale graph processing,” in
2014 IEEE Big Data 2014, Washington, DC, USA, October
27-30, 2014, 2014, pp. 33–40.

[15] J. Miao, A. Gerstlauer, and M. Orshansky, “Multi-level ap-
proximate logic synthesis under general error constraints,” in
ICCAD ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp.
504–510.

[16] D. R. Karger, “Random sampling in cut, flow, and network
design problems,” in 26th Annual ACM STOC, ser. STOC ’94.
New York, NY, USA: ACM, 1994, pp. 648–657.

[17] M. Tumminello, T. Aste, T. Di Matteo, and R. N. Mantegna,
“A tool for filtering information in complex systems,” Na-
tional Academy of Sciences of the USA, vol. 102, no. 30, pp.
10 421–10 426, Jul. 2005.

[18] J. B. Glattfelder and S. Battiston, “Backbone of complex
networks of corporations: The flow of control,” Physical
Review E, vol. 80, no. 3, pp. 036 104+, Sep. 2009.

[19] A. S. Maiya and T. Y. Berger-Wolf, “Sampling community
structure,” in WWW’10. New York, NY, USA: ACM, 2010,
pp. 701–710.

[20] M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” Physical Review, vol. E
69, no. 026113, 2004.

[21] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzen-
macher, “Min-wise independent permutations (extended ab-
stract),” in STOC ’98. New York, NY, USA: ACM, 1998,
pp. 327–336.

[22] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge,
“Razor: A low-power pipeline based on circuit-level timing
speculation,” in MICRO 36, Washington, DC, USA, 2003.

[23] B. Childers, H. Tang, and R. Melhem, “Adapting processor
supply voltage to instruction-level parallelism,” in Kool Chips
2000 Workshop, 2000.

[24] G. Tziantzioulis, A. M. Gok, S. M. Faisal, N. Hardavellas,
S. O. Memik, and S. Parthasarathy, “b-hive: a bit-level
history-based error model with value correlation for voltage-
scaled integer and floating point units,” in 52nd Annual DAC,
San Francisco, CA, USA, June 7-11, 2015, 2015, p. 105.

[25] V. Satuluri and S. Parthasarathy, “Scalable graph clustering
using stochastic flows: applications to community discovery,”
in KDD ’09. ACM, 2009.

[26] S. M. Van Dongen, “Graph Clustering by Flow Simulation,”
Ph.D. dissertation, University of Utrecht, The Netherlands,
2000.

[27] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, and Others, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7,
Aug. 2011.

[28] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and
N. Jouppi, “Mcpat: An integrated power, area, and timing
modeling framework for multicore and manycore architec-
tures,” in MICRO-42, 2009, Dec 2009, pp. 469–480.

