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1. Introduction 
In the last century, micro electromechanical systems (MEMS) have developed rapidly due to their 

advantages of small size, light weight, low power consumption and low cost[1]. Such development has 

brought an increasing interest in the surface characterization of micro devices as it optimizes the device 

performance. Optical waveguide using silicon-on-insulator (SOI) substrates has generated significant 

interest, since this technology can be CMOS compatible and offers a wide range of possibilities. The SOI 

technology bases on the use of a layered silicon-insulator-silicon substrate in place of conventional silicon 

substrate during the manufacturing of semiconductors. The SOI technology can diminish the parasitic 

device capacitance and improve performance. There are two major benefits of SOI technology compared 

to conventional silicon technology.  One is the lower parasitic capacitance because of the isolation from 

the bulk silicon, which increases power consumption at matched performance. The other is resistance 

to latch up due to complete isolation of the n- and p-well structure[1]. 

SOI increases chip functionality and does not require the cost of most process equipment changes (such as 

higher resolution lithography tools). Advanced circuits, basing on multiple layers of SOI-type device 

silicon, can lead the way to a coupling of electrical and optical signal processing into a single chip. This 

results in a dramatic broadening of communication bandwidth with new applications such as global 

ranging, direct-link entertainment and communication to hand-held devices[2]. 

In the 20th century, several papers discussed the performance of high-index-contrast micro photonic 

devices based on SOI technology. However, these devices are always limited by the scattering losses 

caused by the sidewall roughness. If we want to use SOI waveguides for optical communication, both 

polarization insensitivity and single-mode propagation have to be satisfied at the same time [4]. In order 

to reach these conditions, we need deeply etched rib SOI waveguides with dimensions of the order of 1 

mm. Because of the etching process realized by reactive ion etching (RIE), these devices generally suffer 

from side-wall roughness [5]. Sidewall roughness is a significant issue for optical devices. Surface 

roughness has critical effects on the performance and reliability of a micro device [3]. There are two main 

factors that influence the performance of semiconductor devices [4]. One is intrinsic material losses(e.g. 

free carrier absorption) and the other is scattering loss from imperfections(e.g. fabrication errors). 

Waveguide side-wall roughness affects performance because the modes propagating in the waveguide 

penetrate into the waveguide side-walls, which results in significant scattering losses. Here we are going 

to discuss the latter situation. We will discuss the 2D analysis and 3D analysis separately.  



2.  2D analyses of geometry on scattering losses in planar 
dielectric waveguides 
 

Many studies have tried to model the effects of roughness and waveguide dimension on 

scattering losses by 2D models. The most commonly accepted one is the Payne-Lacey(PL) 

analysis model[5]. Here we want to calculate the scattering losses from a random imperfection of 

the wall of a slab waveguide, in which the optical power is being transmitted[5]. It uses a closed 

form expression to describe the scattering losses in 2D ways. The equation is expressed as a 

function of fundamental waveguide parameters, the root-mean-square(r.m.s) roughness(𝜎) and 

the correlation length(𝐿!).  

 

Mathematical	  description	  of	  roughness	  

 

The geometry of strip waveguides looks like Fig.1( reprint from [6]) below. Our goal is to study 

the effects of sidewall roughness by developing a cover with intentional roughness added to smooth 

waveguides etch stripes. The silicon core layer is surrounded by a silica cladding. We can also tell 

the roughness model from Fig.1 ( reprint from [6]).  From the figure we can tell the top and the 

bottom of the waveguide are polished. Furthermore, we also assume that the top and the bottom 

of this waveguide are perfectly smooth, which means there is no roughness on the surface. Since 

for this kind of model there is only roughness on the left and right side of the waveguide(for 

stripe waveguide), a 1D figure is enough to display the roughness of the waveguide we are going 

to calculate. Here we use f(z) to shows the excursions of the real edge. We can think f(z) as the 

local deviation of the perturbed surface from the perfect smooth waveguide. We always use the 

autocorrelation to describe the nature of roughness. Usually, it can be approximated as below[5]: 

 

𝑅 𝑢 = 𝑓(𝑧)𝑓(𝑧 + 𝑢) ≈ 𝜎!exp  (− 𝑢 /𝐿!)  (1) 



 

 
Figure 1 Symmetrical slab waveguide geometry 

Here, <∙> shows the ensemble average,  𝜎 is the standard variance of side wall roughness, and 𝐿!  

is the correlation length and u is the distant between the side wall roughness surface and the 

perfect smooth waveguide surface. 

 

In order to calculate the scattering losses, we have to assume a random variance of waveguide 

width first. As a result, the local variances of effective index are related to a pseudo-grating 

along the side wall. As a fraction of the dipole cannot be recovered, the scattering loss effect 

occurs.   

 

It is easy to show that the exponential radiation loss coefficient is [6]: 

 

𝛼! =
𝑃!"#/2𝐿
𝑃!

 

 

Where 𝑃!"#/2𝐿 is the total power radiated per unit length of waveguide, given by 

 



𝑃!"#
2𝐿 =

𝑛!"
2 (

𝜀!
𝜇!
)

< |𝐸!(𝑟,𝜃)|! >
2𝐿

!

!
𝑟𝑑𝜃 

Where 𝜇! is vacuum permeability𝜇! = 4𝜋 ∗ 10!!,  𝜀! is vacuum permittivity𝜀! = 8.85 ∗ 10!!", 

L is the length of waveguide, ncl is the effective index of waveguide cladding and Ex is the 

incident electric field. Here we use the polar coordinate to describe the electric field. r is the 

intensity of the electric field and incidence angle of the electric field. 

 

And 𝑃! is the total guided power, given by 

 

𝑃! =
𝑛!
2

𝜀!
𝑢!

Φ!(𝑦)𝑑𝑦
!

!!
 

 

nc is the effective index of waveguide core. 𝜇! is vacuum permeability and  𝜀! is vacuum 

permittivity we said in the last paragraph. y is the width of waveguide in the Figure1. Thus𝛼! , 

the radiation loss coefficient, is given by 

 

𝛼! =
!! ! !!!!!" !!!!

!!!!
     𝑅(𝛽 − 𝑛!"𝑘!𝑐𝑜𝑠𝜃)𝑑𝜃

!
!  (2) 

 

  Φ(𝑦) is normalized so that 

Φ! 𝑦 𝑑𝑦 = 1
!

!!
 

 

Where Φ!(y) is a model function depending only on the waveguide geometrical parameter and 

𝑘! =
!!
!

 is the wavevector in vacuum. 𝜆 is the wavelength of incident wave and 𝜃 is the angle of 

incident wave.  𝛽 = !!
!
𝑛!"" is the propagation constant, neff is the effective index of waveguide. 

nc is the effective index of waveguide core and ncl is the effective index of waveguide cladding. 

𝑅 is the power spectrum function. Using Wiener-Khintchine theorem [7] to calculate the total radiated 

power, 𝑅(Ω) is related to the R(u)  we got above. The theorem states that the autocorrelation function of 

a wide-sense-stationary random process has a spectral decomposition given by the power spectrum of that 



process. For example, if x is a wide-sense stationary process, then we can get the below equation 

according to the theorem.  

 

𝑟!! 𝑇 = 𝑒!!"#$𝑑𝐹(𝑓)
!

!!
 

 

Where 𝑟!! 𝑇  is the autocorrelation function of the x(t) at every lag T. t represents the time and f is the 

frequency of the signal. As the theorem, there must be a monotone signal function F(f) that equals to the 

equation below.  

 

𝑟!! 𝑇 = 𝐸[𝑥(𝑡)𝑥∗(𝑡 − 𝑇)] 

 

The result shows the total radiated power is the integral of the power carried by each randomly radiate 

wave. As said by Wiener-Khintchine theorem and Fourier Transformer, we have 
 

𝑅(Ω) = 1/2𝜋 𝑅(𝑢)exp  (𝑖Ωu)𝑑𝑢!!
!!   (3) 

 

The autocorrelation function considers the local variances of effective index linked to the 

evolution side-wall roughness. Furthermore, it reflects the average correlation between one 

location along the waveguide with another set at distance u [8].  

 

A lot of experimental research has shown that an exponential statistic is well suited to characterize 

sidewall roughness of larger waveguides [9]. However, as I known, no experimental evidence has been 

yet reported for submicron type waveguide.  As a result, base on equation (1), a sidewall roughness 

described by an exponential autocorrelation function is assumed in the following such as we can get the 

scattering loss coefficient in dB/cm [10] 

𝛼!"/!" =
!.!"!!

!! !!!!! ! ! !(!,!)
 (4) 

 

Where 𝑘! =
!!
!

is the wavevector in the vacuum, 𝜎  is the standard deviation, d is the half width 

of the waveguide, 𝑛! is the effective index of the waveguide core,  g(V) is a function depending 

only on the waveguide geometry and 𝑓(𝑥, 𝛾) is linked to the side-wall roughness.  



 

𝑔 𝑉 = (𝑈! + 𝑉!)/(1+𝑊) (5) 

 

The normalized coefficients are 

 

𝑈 = 𝑘!𝑑 𝑛!! − 𝑛!""! (6) 

 

𝑉 = 𝑘!𝑑 𝑛!! − 𝑛!"! (7) 

 

𝑊 = 𝑘!𝑑 𝑛!""! − 𝑛!"! (8) 

 

And  

 

𝑓 𝑥, 𝛾 =
! !!!!! !!!! !!!!!!!

!!!! !!!!!!!
 (9) 

 

Here the x, 𝛾,∆ are 

 

𝑥 = !!!
!

  (10) 

 

𝛾 = !!"!
!!! ∆

 (11) 

 

∆= (𝑛!
! − 𝑛!"!)/(2𝑛!!)  (12) 

 

Using the above equations we plot the figure below. Here nc=3.44, ncl=1.44, lambda is 1.56 um 

and 𝜎 = 6nm, Lc =50 nm. 



 
Figure 2 Contour lines of the propagation loss (waveguide width 150nm) 

 



 

Figure 3 Contour lines of the propagation loss(waveguide width 500nm) 

 

Numerical simulation result shows that the scattering losses of SOI waveguide increases 

drastically with decreasing of waveguide width. Since the narrower a waveguide is, the stronger 

interaction of the guided modes with waveguide mode. Also the expression predicts that the 

scattering loss increase when the surface roughness increase too. And for a given surface 

roughness, the scattering loss rises as the waveguide dimensions are decreased. 

 
 

 

 

 



3. 3D analysis of scattering losses due to sidewall roughness 
in microphotonics waveguide 
 

As we know, there are many reports worked on 2D analysis of scattering losses which limit the 

performance of micro photonics devices. A popular way to do 2D analysis is to use the effective-

index method. The 2D way we discussed in the 2D analysis section was based on this method. 

Haus indicated that applying a 2D analysis to a strip waveguide assumes an incorrect profile 

because it does not consider the waveguide of actual rectangle waveguide. The biggest shortage 

of 2D analysis is that it cannot predict how the cross session affects the transmission 

performance. 

 

In order to move on, many scientists start to do some 3D work. As we know, it is complicated to 

use 3D analysis to calculate the scattering losses. Here, the paper [6] presents a leading-order 3D 

analysis of scattering losses due to sidewall roughness, valid for any refractive-index contrast 

and field polarization.  For the situation of low refractive index contrast waveguide, we would 

choose to use a simplified 3D method. Then, we could apply the model to all range refractive 

index contrast situations based on the simple model we built just now.  

 

We need to define all constants: permeability, permittivity, (for both, i.e. free space and 

waveguide material used), wave number, incident electric field, etc. We define each variable 

with its known value to be used in calculations. Here, wavelength is defined by λ, wave number 

by ki, permeability of free space by meu and permittivity of free space by eps, etc. Also, we need 

to consider the coordinates of incident electric field, to the waveguide and also at the point of 

observation. The two are discriminated by x, y, z and 𝑥!, 𝑦! and 𝑧!. The propagation constant is 

defined as β. Material parameters are defined as 𝑛!"#$ and 𝑛!"#$. 

	  

	  

Roughness	  Model	  

 



For the convenience of our calculation, we consider the top and bottom walls to be perfectly 

smooth and let the two sidewalls to have the same roughness statistics. The two roughness 

statistics are unrelated to each other[7]. This assumption holds in most cases as the top and 
bottom roughness mostly comes from the deposition process and the sidewall roughness comes 
from the patterning process[10]. It is only in select polycrystalline materials that the top or 
bottom roughness may be partially correlated to the sidewall roughness. When uncorrelated, the 
top and bottom roughness can be considered by adding the scattering losses due to the top and 
bottom walls to the scattering losses due to sidewall roughness. In summary, the present analysis 

can be used to get scattering losses. 

 

Initially define the roughness model of the inner sidewalls of waveguide. It is one dimensional 

vector 𝑓 𝑧  with zero mean. Nature of the roughness is described by the autocorrelation function 

given by: 

𝑅 𝑢 = 𝑓(𝑧)𝑓(𝑧 + 𝑢)   (13) 

Here u represents the distant of sidewall roughness from perfect waveguide, z is the length of 

waveguide. As we get from 2D part we knew that 

R(u) ≈ 𝜎!exp  (− |!|
!!
)  (14) 

Lc is the correlation length. And use Fourier transform we can get that  

𝑅(ξ) ≈ 𝑅(𝑢)exp  (𝑖𝜉𝑢)𝑑𝑢!!
!!   (15) 

Then by using exponential model, we get the spectral density of roughness 

𝑅(ξ) ≈ !!!!!
!!!!!!!

  (16) 

𝑅 𝜇  gives the roughness model matrix. This roughness model is being used for calculating the 

scattering losses in late equation. Where 𝜎  is the standard deviation, Lc is the correlation length. 

Volume	  current	  method	  (VCM)	  

 



The analysis is based on volume current method (VCM) to get the scattering losses. The method 

is applicable to spheres having small refractive-index perturbation. In this method the internal 

and scattering fields are approximated with a separation-value solution. And the VCM make all 

kind of the dielectric constant as equivalent polarization current densities. 

Using volume current method, calculated current density vector J(r). Following equations 

illustrate the calculation involved in calculating J(r). 

𝐽 𝑟 = −𝑖𝑤 𝜀 𝑟 − 𝜀! 𝑟 𝐸 = −𝑖𝑤𝛿!(𝑟)𝐸  (17) 

 

Here, 𝐸 is the incident electric field, 𝜀  is permeability of material of waveguide and free space, 

and  𝑤 is the frequency of incident field, waves are input to the function J(r).  

Then we can infer the magnetic vector potential 𝐴   

𝐴 = !
!!
(!

!!!"!!!

!
) 𝐽 (𝑟!𝑒!!!!!!!!!)𝑑𝑉! (18) 

Where ncl is the refractive index of waveguide, 𝑘! =
!!
!

is the wavevector in the vacuum, u is the 

permeability of corresponding waveguide. 

The far field pointing vector reduce to 

𝑆 = 𝑟 !!!!!
!!

|𝑟×𝐴|!  (19) 

Where r is the vector of incident wave, 𝑘! =
!!
!

is the wavevector in the vacuum, u is the 

permeability of corresponding waveguide. As a result, the total radiated power is 

P = 𝑆 ∙ 𝑟𝑑𝐴  (20) 

Depending on this basic idea, we can then calculate the value of scattering losses. A more 

exactly electric field can be get from the corresponding dyadic Green’s function. 



	  

	  

3D	  analysis	  model	  

 

Base on the roughness model we built before, since the roughness is small compared with the waveguide, 

we can employ a mode of perfectly waveguide to do the approximation for the waveguide core [12]. This 

mode can be express as 

𝐸! 𝑟 =   Φ(𝑥, 𝑦)𝑒!"# 

𝛽 is the propagation constant. Then we could replace the waveguide by the following polarization current 

density 

𝐽!"#$ 𝑟 = −𝑖𝜔𝜀! 𝑛! 𝑟 − 𝑛!"#$! 𝐸!(𝑟)(22) 

Where 𝑛!"#$  is the cladding refractive index, 𝑛(𝑟) is the refractive-index profile of the rough waveguide, 

𝜀! is the free-space permittivity. 

 

Figure4(reprint from [6]) Decomposition of roughness problem  

In order to make the calculation simpler, we decompose the roughness waveguide into two parts. Just 

removed the perfect part from the waveguide and left the roughness one which need to be calculated 

alone. As the Figure5(reprint from [6])illustrated. And the current distribution of roughness is express as 

equation (17).   



 

 

Figure 5(reprint from [6]) A simpler illustration of roughness model 

 

To calculate the far field of J(r), we need to use the array factor here. An array factor is to divide 

the far field array into several elements of that array. As the Fig.6 (reprint from [6])demonstrated, 

we use rods of the height of the waveguide to show the roughness. Then the far field of 

roughness could be found by the below equation: 

𝐸!"#$! = 𝐸!"!#!$%𝐹!"#$! (22) 

Where 𝐸!"#$! is the far field of roughness, 𝐸!"!#!$% is a single rod of the far field. F is the 

roughness array factor. 

Next step is to calculate dyadic green’s function[6]. Beside constants like: wave number, points 

of incident and observation, thickness of the layers etc, we need to calculate: Fresnel reflection 

coefficient for transverse electric mode RTE, Fresnel reflection coefficient for transverse 

magnetic mode RTM, Fresnel transmission coefficient for transverse electric mode TTE and 

Fresnel transmission coefficient for transverse magnetic mode TTM.  

𝑅!"!" =
!!!!!!!!!!!!!
!!!!!!!!!!!!!

      (23)                                  𝑅!"!" = !!!!!!!!!!!!!
!!!!!!!!!!!!!

(24) 



𝑇!"!" =
!!!!!!!

!!!!!!!!!!!!!
    (25)                                        𝑇!"!" = !!!!!!!

!!!!!!!!!!!!!
(26) 

Here , k is the corresponding wavenumber in different layer of waveguide, u is the permeability 

of corresponding layer in waveguide, 𝜀! is the permittivity in j layer of waveguide. 

After calculating dyadic green function, it is time to calculate scattering losses in electric field at 

point of observation whose vector is defined as r_c. Form surface current density Jr and 

calculation of dyadic green function X, Erc is calculated, which is given by following equation; 

𝐸 𝑟! = 𝑖𝑤𝜇 𝐺 𝑟! , 𝑟!! . 𝐽(𝑟!)𝑑𝑉! 

This will results in electric field intensity vector. Then x, y and z components of electric field 

intensity vector Erc are calculated.  

Dyadic	  Green	  Function	  
 

Now what we need to do is to calculate the green function, from the book[4] we got: 

𝐺 𝑟! , 𝑟!′ =
𝑖
8𝜋! 𝑀 𝑘!, 𝑟! , 𝑟!′ + 𝑁 𝑘!, 𝑟! , 𝑟!′

!
!! 𝑑𝑘!𝑑𝑘!

𝑘!"|𝑘!|^2
 

Where  

𝑀 𝑘!, 𝑟! , 𝑟!′ = (𝑘!×𝑧!)(𝑘!×𝑧!)𝑒!!! !!!!!! 𝐹∓!"(𝑧! , 𝑧!′) 

And 

𝑁 𝑘!, 𝑟! , 𝑟!′ = (
𝑘!×𝑘!×𝑧!
𝑖𝜔𝜀!

)(
𝑘!×𝑘!×𝑧!
−𝑖𝜔𝜇!

)  𝑒!!! !!!!!! 𝐹∓!"(𝑧! , 𝑧!′) 

Where 

𝑘! = 𝑘!!𝑥! + 𝑘!!𝑦! 

Here 𝑘!! , 𝑘!! are the wavenumber in x direction and y direction.  



𝐹! 𝑧! , 𝑧!! = [𝑒!!!!!!! + 𝑒!!!!!!(!!!!!!!!)𝑅!,!!!] ∙ 𝑒!!!!!!!𝑇!"𝑒!!!!!!!!!! ∙ [𝑒!!!!!!!!!

+ 𝑒!!!!!(!!!!!!!!!)𝑅!,!!!]𝑀!𝑀′!! 

𝐹! 𝑧! , 𝑧!! = [𝑒!!!!!!!! + 𝑒!!!!!(!!!!!!!!)𝑅!,!!!] ∙ 𝑒!!!!!!!!!!𝑇!"𝑒!!!!!!!!! ∙ [𝑒!!!!!!!!

+ 𝑒!!!!!!(!!!!!!!!!)𝑅!,!!!]𝑀!𝑀′!! 

With 

  

Here we can get T and R from equation (23)(24)(25)(26). And di means the width of waveguide i 

layer, kzc represent the waveguide number in z direction. 

Once we calculate the green function then we can have the electric field quickly. Using the 

components of electric field intensity vector, far field point vector components Sx, Sy and Sz are 

then being calculated using the far field Poynting vector: 

𝑆 𝑟! =
1
2𝑅𝑒 𝐸 𝑟! ×

𝑘!
𝑤𝜇 𝑟×𝐸

∗(𝑟!)  

And E is the electric field of incident wave. Re{} means we just take the real number part of he 

result. 𝑤 is the frequency of the incident wave and u is the permeability of waveguide. The far 

field of a point source at the origin is 

𝐸!"# 𝑟! = 𝑖𝜔𝜇𝐺(𝑟! , 0) ∙ 𝐽!"# 

And also 

𝐽!"#,! = 𝐽!"#,!! = −𝑖𝜔𝜖!(𝑛!"#$! − 𝑛!"#$!)𝑣𝑧!, 



𝐽!"#,! = 𝐽!"#,!!! = −𝑖𝜔𝜖!(𝑛!"#$! − 𝑛!"#$!)𝑣𝑦! 

In this model, only the two main field components of the first TE and TM-like modes are 

considered. For calculating far field pointing vectors for rough waveguide for transverse electric 

mode SrTE and for transverse magnetic mode SrTM, we need to calculate power array factors for 

different model, Fcos and Fsin. For this we need to evaluate: 

𝐹!"# ! =
8𝑎𝜋! cos! 1

2𝑎 cos 𝜑 sin 𝜃 𝑛!"#$𝑘!
𝜋! − 𝑎! cos! 𝜑 sin! 𝜃 𝑛!"#$! 𝑘!! !  

𝐹!"# ! =
32𝑎𝜋! sin! 1

2𝑎 cos 𝜑 sin 𝜃 𝑛!"#$𝑘!
4𝜋! − 𝑎! cos! 𝜑 sin! 𝜃 𝑛!"#$! 𝑘!! !  

 

Figure 6 The coordinate system used in paper(reprint from [6]) 

Here   𝑛!"#$ , 𝑘!, are constants waveguide transmission parameters we mentioned before.  𝑎 is the 

height of the waveguide. 𝜑,𝜃  are the parameter that described the waveguide in the figure above. 

Using Fcos and Fsin, we evaluate far field pointing vector for TE and TM modes using: 

𝑆!"#$!!" =
𝐹!"# ! 𝐹!"#$!

!
𝑆! + 𝛾!"𝑆!

1+ 𝛾!"
 

𝑆!"#$!!" =
𝐹!"#$!

!
𝐹!"# !𝑆! + 𝛾!" 𝐹!"# !𝑆!
1+ 𝛾!"

 



Where 𝛾!" =
|!(!!,!)∙!|!!!!

!
!
!!!

|!(!!,!)∙!|!!!!
!
!
!!!

,  𝛾!" =
|!(!!,!)∙!|!!!!

!
!
!!!

|!(!!,!)∙!|!!!!
!
!
!!!

,  Φ(𝑑) is normalized so that 

Φ! 𝑦 𝑑𝑦 = 1
!

!!
 

And the ensemble average of the roughness power array factor is 

< |𝐹!"#$!|! >= 2(2L)𝑅(𝛽 + 𝑛!"#$𝑘!sin  (𝜃!)sin  (𝜑!)) 

L is the length of waveguide,   𝛽 is the propagation constant, k0 is the waveguide. All of these 

parameters we mentioned before. 𝜑,𝜃  are the angles to describe the waveguide in figure above. 

Here we need to use equation(16) to plug in to get the result we want. 

At last using this SrTE and SrTM, calculating scattering loss per unit length by putting their 

values in relation given below: 

𝑃
2𝐿 =

𝑆!"#$!
2𝐿 . 𝑟 𝑑𝐴 

Here we use SrTE and SrTM variable to hold this result and then a contour plot of SrTE and 

SrTM has been plot. 

Result 

 
Figure 7(a) Scattering losses normalized to roughness variance(reprint from [6]) 



 

Figure 7(b) Scattering losses normalized to roughness variance(reprint from [6]) 

 

Figure 8 Scattering losses normalized to roughness variance(for TE mode) 



 

Figure 9 Scattering losses normalized to roughness variance(for TM mode) 

 

From the result, we can see that Scattering losses show significant polarization dependence. Figures 

above are plotted for Si3N4/SiON waveguides, for which ncore=2.00 and nclad = 1.45. The figure 7(a) 

and figure 7(b) are got from paper[6]. Meanwhile I also tried to plot the figure myself, which display as 

figure8 and figure 9. However, the results are different from the paper.  The difficulty here is to calculate 

the green function, which involves the knowledge of complicate mathematics integrations and also 

involve some quadrature calculation. Here I used matlab build-in library Quad to do the math. The other 

problem is the integrity involves some vector quadrature calculations.  polarization dependence is 

dominated by the radiation efficiency, which is higher for the TM like mode. The TM-like mode is 

mainly x	 polarized while the TE-like mode is mainly y	 polarized[9]. 

Conclusion 
Here we use two ways to do the analysis for both 2D and 3D. For 2D analyses, it is not as 

complicate as 3D. The 2D scattering losses theory bases on effective-index method. And it 

cannot predict how the waveguide cross section affects radiation efficiency. And also 2D 

analyses can misestimate scattering losses of small waveguides. For the 3D analysis, it is valid 



for any refractive-index contrast and field polarization which 2D analyses cannot. The way to do 

the 3D analyses is to start from low refractive-index-waveguide first and then extend to all index 

contrast. Through using 3D analysis we could improve the power losses estimate and to design a 

more efficient cross section of waveguide to minimize the scattering losses for roughness 

statistics.  

 

 

 

 

	  

	  

	  

	  

	  

	  
 

 

 

 



4.	  Controlling	  temperature	  dependence	  of	  silicon	  waveguide	  
 

Nowadays, silicon-on-insulator(SOI) substrates are useful for many photonic integrated devices.  

But as we known, one of the fundamental issues to limit the performance is the high temperature 

sensitivity. For example, the arrayed waveguide grating(AWG) devices show the spectrum shift 

of about 80pm/K in the 1.55um wavelength region[21].  There are many solutions propose to 

minimize the influence of temperature sensitivity and two of them are popular solutions 

nowadays. One is to use a polymer overlay cladding which has negative TO coefficient. The 

other one is to use local heating to dynamically stabilize the devices. This can be finished by 
some different ways. Like external heater [14], direct heating through a bias current [15]or using 
the silicon itself to heat [16]. However, both of these two ways have their shortages. Polymer 
overlay cladding is not compatible with COMS and polymer cannot tolerate high temperature. 
And for the second ways, all of them require huge space and power consumption, which is not 
economic.  

Here, the paper [17] create a way base on (M. Uenuma, 2009)[18]. The way they proposed to 
eliminate the temperature sensitivity is to change the thermo-optic effects of their interfering 
arms by their waveguide width and length optimization[18]. It is able to reduce the temperature 
sensitivity from 80pm/K to 28pm/K. And the paper [17] shows that they can make the thermal 
spectral shift close to near zero over a wide temperature range. The basic idea here is to make the 
thermo-optic effect between the two arms balance and maintain a certain phase difference 
between two arms [17]. Here is Figure 7 illustrates how the two arms waveguide works. 

 



Figure 10 Schematic of the proposed device 

The waveguide here consists of two arms and couples 3-dB directional couplers. One of the arms 

propagates at length of L horizontally and 𝐿! vertically. The other arm also propagates a length 

of L horizontally but instead of 𝐿! at vertical. For the width of the different arms, we can see 

from Figure7 that the up width 𝑊! is larger than𝑊!. 

As the paper[17] said, we can get the overall temperature dependence of the device as  

𝑚𝜆! = 𝑛!""∆𝐿 + ∆𝑛!""𝐿 

Where ∆𝐿 = 𝐿! − 𝐿!, ∆𝑛!"" = 𝑛!""𝑊! − 𝑛!""𝑊!  and m here is the interference order at a given 

wavelength𝜆!. Here m can be an integer to give constructive interference at that wavelength or a 

half-integer to give destructive interference. Due to waveguide dispersion, the interference order 

is modified as  

𝑀 = 𝑚 −
∆𝐿𝜕𝑛!""
𝜕𝜆 −

𝐿𝜕(∆𝑛!"")
𝜕𝜆  

M, 𝑛!"", lambda and L are parameters we mentioned before. As a result, the temperature 

sensitivity of the wave spectrum is showed as  

∆𝜆!
∆𝑇 =

∆𝐿𝜕𝑛!""
𝜕𝑇 +

𝐿𝜕(∆𝑛!"")
𝜕𝑇

𝑀  

As we knew before, as the temperature changed, the spectrum of the wave would be shifted. Here ∆𝜆! is 

the wavelength of the incident wave and the ∆𝜆! represents the difference of wavelength 

between the shifted wave and the initial wave. So ∆!!
∆!

 represents the shift of wavelength per K 

changed and we can use that to display the temperature sensitive. Also, the above equation shows it 

can be shown that ∆𝐿 and ∆𝑒!! are chosen appropriately with proper signs, the minima shift can be 

brought down to zero. 

Base on the above theorem, the paper list some simulation result. First of all, we need to do the 
device fabrication to get the testing device. The device here combined a SOI wafer with 240 nm 
Si thickness and 3 mm buried oxide thickness. 100nm of silicon oxide was deposited on Si layer. 



Also the oxide was etched by reactive ion etching(RIE). At last, the devices were cladded with 
3mm of plasma enhanced chemical vapor deposition(PECVD) oxide. 

 

Figure 11 (reprint from [17]) Measured spectral shift with temperature compared with 
theoretically calculated values 

 

 

Figure 12(reprint from [17]) Operation of temperature insensitive MZI over 50 degrees 

 



As the Figure 8 shows, the thermal spectral shifts agree well with the theoretically predicted  
values from the equation above. The data (69,63) means the temperature T is 69K and 
interference order m is 63  For this simulation, the W1 = 420nm and W2 = 190nm. The range of 
spectral shift could as large as -0.54 nm/K and as small as ~0.005 nm/K. From Figure 9 we can 
see that there is no significant shift in the transmission minima. For the experiment W1 = 420nm 
and W2 = 190nm, the interference order is 50.5 and initial wavelength is 1550 nm. The result 
shows that this temperature insensitive devices is fully scalable and applicable. And this 
proposed approach is applicable for any waveguide geometry – strip, slot and rib waveguides. 
Especially for rib waveguides, which would benefits a lot from the temperature insensitive 
device.    

 

 

 
 

5.Propagation	  losses	  of	  silicon	  nitride	  waveguides(Si3N4)	  
 

Optical waveguides are one of the fundamental building blocks of microphotonics. The choice of the 

waveguide material determines the wavelength of the signal and the integration density. Stoichiometric 

silicon nitride Si3N4 for the core and silicon oxide SiO2 for the cladding could be a suitable choice. 

Because of the large refractive index difference(∆𝑛 ≈ 0.55), the low scattering losses, the wide 

transparency window, and the compatibility with Si microelectronic technology. 

The paper [22] shows that Si3N4/SiO2 multilayer(ML) waveguides can increase the optical confinement 

factor and reduce optical losses and did the experiment for both multilayer(ML) and singlelayer(SL) 

situation.  

The way they people use to measure propagation losses was performed by using the insertion loss 

technique for various waveguide lengths. Waveguides have been measured by coupling-in light from laser 

diodes (1310 nm, 2 mW;1544 nm, 10 mW) or from a tunable laser s1500–1600 nm, 10 mW). The 

transmitted signal was imaged by a microscope objective. Data losses have been obtained by measuring 

five waveguides for each length typically five values from 0.5 to 5 cmd. The waveguide propagation loss 



coefficients of SL and ML waveguides are extracted by the slope of the insertion loss versus waveguide 

length curve. Here are the experiment results: 

 

The figure above shows propagation losses at 1550 nm as a function of waveguide width in the two 

waveguide geometries. The increasing propagation losses with decreasing waveguide width are due to the 

increase of sidewalls scattering losses for rib-loaded waveguides 

 

This table shows the waveguide propagation loss coefficients of SL and ML waveguide. The table also 

displays the propagation losses for different geometry of waveguides. The difference between channel 



(about 4.5 dB/cm) and strip-loaded (about 6 dB/cm) waveguides reflects analogous trends found at 780 

nm. 

 
Compare these result with Si/SiO2 we can found that the propagation losses is higher, but we can see  
Si3N4-based waveguides still have many advantages with respect to other systems: 

1) In	  a	  wide	  wavelength	  range	  like	  from	  visible	  to	  the	  near	  infrared)	  the	  losses	  are	  much	  lower	  than	  
others.	  

2) The	  layers	  Si3N4	  used	  are	  compatible	  with	  CMOS	  processing.	  
3) The	  deposition	  process	  is	  easier	  compare	  with	  other	  material	  
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