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Abstract—Conservative estimates place the amount of data
expected to be created by mankind this year to exceed several
thousand exabytes. Given the enormous data deluge, and in
spite of recent advances in main memory capacities, there is a
clear and present need to move beyond algorithms that assume
in-core (main-memory) computation. One fundamental task in
Information Retrieval and text analytics requires the maintenance
of local and global term frequencies from within large enterprise
document corpora. This can be done with a counting hash-table;
they associate keys to frequencies. In this paper, we will study
the design landscape for the development of such an out-of-core
counting hash table targeted at flash storage devices. Flash devices
have clear benefits over traditional hard drives in terms of latency
of access and energy efficiency. However, due to intricacies in
their design, random writes can be relatively expensive and can
degrade the life of the flash device. Counting hash tables are a
challenging case for the flash drive because this data structure is
inherently dependent upon the randomness of the hash function;
frequency updates are random and may incur random expensive
random writes. We demonstrate how to overcome this challenge
by designing a hash table with two related hash functions, one
of which exhibits a data placement property with respect to the
other. Specifically, we focus on three designs and evaluate the
trade-offs among them along the axes of query performance,
insert and update times, and I/O time using real-world data and
an implementation of TF-IDF.

I. INTRODUCTION

Advances in technology have enhanced our ability to
produce, and store data at very large scales. The sheer volume
of data being generated is increasingly hampering our ability
to manage, retrieve, and subsequently analyze such data to de-
rive actionable knowledge and information. McKinsey Global
Institute estimated that companies from all sectors in United
States have at least 100 TBs of stored data per company,
and many have more than 1 PB [16]. A sizable fraction
of this data is textual in nature. Examples abound ranging
from data produced by financial services to data collected in
administrative parts of government, from customer transaction
histories maintained by retail and wholesale organizations to
large private enterprise document collections, from large-scale
Internet repositories like Wikipedia to online content generated
by social networking and microblogging sites like Facebook
and Twitter.

Given this data deluge it is becoming increasingly clear
that traditional data management, information retrieval and
mining algorithms must be enhanced via efficient disk aware
data structures. Of particular interest in this context, are recent
advances in storage technology that have led to the develop-
ment of flash devices. These devices have several advantages
over traditional hard drives (HDD) such as lower energy
requirements, faster random and sequential seek times because
of a lack of moving parts [2], [5]. Due to the superior access
performance, flash devices have been utilized in enterprise
database applications [22], as a write cache to improve latency
[12], page differential logging [20], and also as an intermediate
structure to improve the efficiency of migrate operations in the
storage layer [21] .However, the writes to the drive can vary in
speed depending upon the scenario. Sequential writes are quite
fast, though random writes, and updates can be significantly
slower. The reason for this is the level of granularity of erasing
and updating data on such devices. An important property of
the flash drive is that it supports only a finite number of erase-
write cycles, after which the blocks on the drive may wear
out.

The different trade-offs in read-write speed leads to a
number of challenges for information retrieval applications,
especially those in which there are frequent in-place updates
to the underlying data. The hash table is a widely used data
structure in modern IR systems [7]. A hash table relies on
a hash function to map keys to their associated values. In a
well designed table, the cost of insertion and lookup requires
constant (amortized) time, and is independent of the number
of entries in the table. Such hash tables are commonly used for
lookup, duplicate detection, searching and indexing in a wide
range of domains including information retrieval. A counting
hash table is one in which in addition to the value associated
with a key, a (reference) count is also kept up to date in order
to keep track of the occurrences of a specific key-value pair.

Counting hash tables are utilized directly or as a pre-
processing step phase of Latent Semantic Indexing [11], Proba-
bilistic latent semantic analysis [14], association mining[24]),
and Term Frequency-Inverse Document Frequency (TF-IDF)
[17]. In the database context, such tables are used for in-
dexing (e.g. XML indexing, and selectivity estimation[1]). As
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a specific example, consider TF-IDF, a technique commonly
used in text mining and information retrieval [26]. TF-IDF
measures the importance of a particular word to a document
given a corpus of documents by tracking the frequency of
keywords. This technique can be used for query processing,
document ranking, and document similarity. Supporting hash
tables are an enormous challenge for the flash drive because
they are naturally based on random hash functions and exhibit
poor access locality. In the IR context, one often requires
frequent in-place updates to the counts, within individual
records, leading to further complications. Such updates can
be expensive, unless they can be carefully batched with the
use of specialized update techniques. This paper will provide
an effective method for updates to the tables in flash memory,
by using a carefully designed scheme which uses two closely
related hash functions in order to ensure locality of the update
operations.

This paper is organized as follows. The remainder of this
section will discuss the properties of the flash drive which
are relevant to the effective design of the hash table. We
will then discuss related work and the contributions of this
paper. In Section II, we will discuss our different techniques.
Section III contains the experimental results. The conclusions
and summary are contained in Section IV.

A. Properties of the Flash Drive

The solid state drive (SSD) is implemented with the use
of Flash memory. The most basic unit of access is a page
which contains between 512 and 4096 bytes, depending upon
the manufacturer. Furthermore, pages are organized into blocks
each of which may contain between 32 and 128 pages. The
data is read and written at the level of a page, with the addi-
tional constraint that when any portion of data is overwritten
at a given block, the entire block must be copied to memory,
erased on the flash, and then copied back to the flash after
modification. Moreover, flash drives can only support a limited
number of erasures (between 10,000 and 100,000 erasures)
after which the blocks may degrade and they may not be able to
support further writes. Management of the flash device blocks
is performed automatically by the software known as the Flash
Translation Layer (FTL) on the flash drive. Thus, even a small
random update of a single byte could lead to an erase-write
of the entire block. Similarly, an erase, or clean, can only be
performed at the block level rather than the byte level. Since
random writes will eventually require erases once the flash
device is full, it implies that such writes will require block
level operations. On the other hand, sequential writes on the
flash are quite fast; typically sequential writes are two orders
of magnitude faster than random writes.

B. Related Work

Rosenblum and Ousterhout proposed the notion of log-
structured disk storage management [25] and mechanisms sim-
ilar to log-structured file systems are adopted in modern SSDs
either at the level of FTL or at the level of file system to handle
issues related to wear-leveling and erase-before-write [8], [15],
[19], [18], [28]. As we discuss later, some of our buffering
strategies are also inspired from log-structured file systems.
There have been hash tables designed with SSDs including the
work presented in [3], [4], [9], [29], [10]. Our designs differ

from previous work because they are optimized for counting
hash tables, and our primary hash table is completely resident
on the SSD; other designs store the primary hash table on an
HDD and utilize the SSD as a cache.

C. Contributions of this paper

In this paper, we design a counting hash table for SSDs
that maintains frequencies using a combination of memory and
disk buffering schemes. To our knowledge this has not been
addressed thus far. In this work, we make the following specific
contributions – (i) We propose a mechanism to support large
counting hash tables on SSDs via a two-level hash function,
which ensures that the random update property of flash devices
is effectively handled, by localizing the updates to SSD; (ii)
We devise a novel combination of memory- and disk- based
buffering scheme that effectively addresses the problems posed
by SSDs (random writes, write endurance). While the memory-
resident buffer leverages the fast random accesses to RAM,
the disk-resident buffer exploits fast read performance and
fast sequential/semi-random write performance of SSDs; (iii)
We perform a detailed empirical evaluation to illustrate the
effectiveness of our approach by demonstrating the traditional
IR algorithm TF-IDF using our hash table.

II. A FLASH-FRIENDLY HASH TABLE

The major property of a hash table is that its effectiveness is
highly dependent upon updates which are distributed randomly
across the table. On the other hand, in the context of a
flash-device, it is precisely this randomness which causes
random access to different blocks of the SSD. Furthermore,
updates which are distributed randomly over the hash table
are extremely degrading in terms of the wear properties of the
underlying disk. This makes hashing particularly challenging
for the case of flash devices.

Hash table addressing is of two types: open and closed,
depending upon how the data is organized and collisions are
resolved. These two kinds of tables are as follows:(i) Open
Hash Table: In an open hash table, each slot of the hash
table corresponds to multiple data entries. Each entry of the
collection is a key-frequency pair. (ii) Closed Hash Table:
Each slot contains a single key-frequency pair. However, since
multiple pairs cannot be mapped onto the same entry, we
need a collision resolution process i.e. when a hashed object
maps onto an entry which has already been filled. A common
strategy is to use linear probing in which we cycle through
successive entries of the hash table until we either find an
instance of the object itself (and increase its frequency), or we
find an empty slot in which we insert the new entry. We note
that a fraction of the hash table (typically at least a quarter)
needs to to be empty in order to ensure that the probing process
is not a bottleneck. The fraction of hash table which is full is
denoted by the load factor f . It can be shown that 1/(1− f)
entries of the hash table are accessed on the average in order
to access or update an entry.

In this paper, we will use a combination of the open and
closed hash tables in order to design our update structure. We
will use a closed hash table as the primary hash table which
is stored on the (Solid State) drive, along with a secondary
hash table which is open and available in main memory. We
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assume that the primary hash table contains q entries, where
q is dictated by the maximum capacity planned for the hash
table for the application at hand. The secondary hash table
contains �q/r� entries where r << q. The hash function for
the primary and secondary hash tables are denoted by g(x)
and s(x), and are defined as follows:

g(x) = (a · x+ b)mod(q) (1)

s(x) = ((a · x+ b)mod(q))div(r) (2)

In general, the scheme will work with any pair of hash func-
tions g(x) and s(x) which satisfy the following relationship:

s(x) = g(x)div(r) (3)

It is easy to see that the entries which are pointed to by a single
slot of the memory-resident table are located approximately
contiguously on the drive-resident (closed) table, because of
the way in which the linear probing process works. This is
an important observation, and will be used at several places
in ensuring the efficiency of the approach. Linear probing
essentially assumes that items that collide onto the same hash
function value will be contiguously located in a hash table
with no empty slots between them. Specifically, the mth slot
on the secondary table, corresponds to entries starting from
r · (m− 1)+1 up to entry r ·m in the primary table. We note
that most entries which would be pointed to by the mth slot of
the secondary table would also map onto the afore-mentioned
entries in the primary table, though this would not always be
true because of the overflow behavior of the linear probing
process beyond these boundaries.

A. Desirable Update Properties of an SSD-based Hash-Table

A naive implementation of a hash table will immediately
issue update requests to the hash table as the data points are
received. The vast majority of the write operations will be
random page level writes due to the lack of locality, which
is inherent in hash function design. As mentioned before, the
cost of such operations will also increase the cost of cleans and
random writes. A desirable property for a hash table would
be block-level updates and semi-random writes. The block-
level update refers to the case when there are multiple updates
written to a block, and they are all accomplished at one time.
If there are k updates written to a block, we should combine
them into one block-level write operation. This can reduce the
number of cleans from k to one. The semi-random writes refer
to the fact that the updates to a particular block are in the same
order as they are arranged on the block, even though updates
to different blocks may be interleaved with one another.

B. Hash table designs

Recall that we combine an open hash table in main memory
with a closed-hash table on the SSD. This open (or secondary)
hash table is typically implemented in the form of a RAM
buffer denoted as HR. The RAM buffer will contain updates
for each block of the SSD and execute batch updates to the
primary hash table on disk, or data segment (denoted by
HD), at the block level. This approach can reduce block level
cleaning operations.

C. Memory Bounded Buffering

The overall structure of the common characteristics of the
hash table architectures presented in this paper is illustrated
in Figure 1. We refer to this scheme as Memory Bounded
Buffering or MB. The RAM buffer, HR , in the diagram is
an open (or secondary) hash table and the data segment is a
closed (or primary) hash table. There are s slots, each of which
corresponds to a block in the data segment. The maximum
capacity of the data segment is q pages, r pages per block and
g entries per page. Thus, the number of slots in the secondary
hash table, s, must be equal to q/r. Updates are flushed onto
the SSD one block at a time. Because of the relationships
between the hash functions of the primary and secondary table,
the merge process of a given list requires access to only a
particular set of SSD blocks which can be maintained in main
memory during the merging process.

D. Memory and Disk Bounded Buffering

Since HR is main-memory resident, it is typically restricted
in size. Therefore, a second buffer can be implemented on the
SSD itself. This new segment is referred to as the change
segment or SE . The change segment acts as a second level
buffer. When HR exceeds its size limitations, the contents are
sequentially written to the change segment at the page level
starting from the first available page in an operation known
as staging. When full, the change segment merges with the
data segment and begins from the top of the change segment.
A page in the change segment may contain updates from
multiple blocks because pages are packed with up to g entries
irrespective of their slot origin. Thus, the change segment is
organized as a log structure that contains the flushed updates of
the RAM buffer. This takes advantage of the semi-sequential
write performance of the SSD and increases the lifetime of the
SSD. The space allocated to the change segment is in addition
to the space allocated to the data segment. This hash table
(with change-segment included) is illustrated in Figure 2. It is
important to note that a stage() operation differs from a merge()
operation in two ways, specifically, stages write at the page
level while merges operate at the block level. Furthermore,
stages involve updates to the change segment while merges
involve updates to the data segment.

There are two types of architectures for the change seg-
ment. In the first design, the change segment SE is viewed
as a collection of blocks where each block holds updates
from multiple lists from HR. In other words, multiple blocks
in the data segment are mapped to a single block in the
change segment. We arrange the change segment in a way such
that each change segment block holds the updates for k data
segment blocks. The value of k is constant for a particular
instantiation of the hash-table, and can be determined in an
application-specific way. For an update-intensive application,
it is advisable to set k to a smaller value at the expense of
SSD space. When a particular change segment block is full,
we merge the information in the change segment to the data
segment blocks. By adding the change segment, we are provid-
ing a more efficient buffering mechanism. Staging a segment is
more efficient than merging it because the change segment is
written onto the SSD with a straightforward sequential write,
which is known to be efficient for the SSD. This approach is
called Memory Disk Buffering or MDB. In this variation of the
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MDB scheme, (which we henceforth will refer to as MDB-L
for MDB-Linear) the space allocated for the change segment is
viewed as a single large monolithic chunk of memory without
any subdivisions. This view resembles a large log file. Thus,
the change segment blocks are not assigned to k data segment
blocks. The writes to the change segment are executed in
FCFS fashion. This type of structure mimics a log-structured
file system and fully takes advantage of the SSD strength
in sequential writes. We maintain a collection of pointers to
identify the ranges, measured in pages, that a particular slot in
the RAM buffer has been staged. These pointers are similar to
the indexing information [25] maintained in log-structured file
systems that helps in reading the files from the log efficiently.
A merge operation is triggered when the change segment is
full. The collection of pointers can be used to identify the pages
a particular block was staged to. This process produces random
reads on the change segment because the ranges span multiple
stage points. During a merge, each page will be requested
by each data segment block that has entries staged onto it.
After all of the pages for a particular data segment block are
read from the change segment, the entries are merged with the
corresponding data segment block.

Fig. 1. Hash Table with RAM buffer

Fig. 2. Hash Table with RAM buffer and Change Segment

E. Element Insertion and Update Process

The element insertion process is designed to perform
individual updates on the memory-resident table only, since
this can be done in an efficient way. Such changes are later
rolled on to the RAM buffer (which is in turn rolled on to
the change segment for some of the schemes). An update or
insertion in the TF-IDF context corresponds to increasing the
occurrence count for a term. For each incoming record x, we
first apply the hash function s(x) in order to determine the slot
to which the corresponding entry belongs. We then determine
if the key x is present inside the corresponding slot s(x). If the
element is found, then we increase its frequency. The second
case is when the key x is not contained inside the buffer which
is pointed to by the slot s(x). In such a case, we add the key

x as a new element to the HR. The size of the HR increases
in this case. If HR has grown too large, it is flushed either
directly onto the change segment or the SSD itself, depending
upon whether or not the change segment is implemented in the
corresponding scheme. Because of the relationship between
the hash functions of HR and the SSD based hash table, such
an update process tends to preserve the locality of the update
process, and if desired, can also be made to preserve semi-
random write properties.

During the insertion process of new items, linear probing
may occur because HD is a closed hash table. If the linear
probing process reaches the end of the current SSD block,
then we do not move the probe onto the next block. Rather, an
overflow region is allocated within the SSD table which takes
care of probing overflows beyond block boundaries. The last
index of the last page of an SSD block is a pointer referring to
the overflow region. The entry that was resident at this position
now resides in the conflict region alongside the newly inserted
entry. Thus, the data segment is a collection of blocks with
logical extensions. The overflow region, a collection of SSD
blocks, is allocated when the hash table is created and it’s
size is a user parameter. If an item is deleted from the data
segment, it can either be removed or its frequency can be set
to zero. This feature is handled during the merge() operation.
Deleted items are ignored and removed during the rewriting
of the data segment block.

F. Query Processing

In the context of TF-IDF, a query can be thought of as a
request for a word’s occurrence count. In the simple hash table,
queries are fulfilled by an I/O request to the data segment.
However, in our proposed designs the corresponding entry
may be found either in the change segment or the RAM
buffer. Therefore, the query processing approach must search
the change segment and the RAM buffer in addition to the
data segment. Thus, the frequency of a queried item is the total
frequency found in the change segment, RAM buffer, and data
segment. The search of the RAM buffer may be inexpensive
because it is in main memory. On the other hand, access to
the change segment requires access to the SSD.

For the case of the data segment, the query processing
approach is quite similar to that of standard hash tables. A hash
function is applied to the queried entry in order to determine
its page level location inside of the data segment. If the entry
is found, the frequency is returned. If the item is not found,
linear probing begins because the disk hash table is a closed
hash. Linear probing halts if the entry is found or an empty
entry was discovered. The query processing of the change
segment requires locating the entry. The location of the entry
may reside in multiple segments due to repeated flushing of the
RAM buffer. Recall that MDB partitions the change segment.
When a RAM bucket is staged, it is always written to the
same change segment block. We locate the appropriate change
segment block and bring it into memory to be searched. In
MDB-L, RAM buckets can reside on multiple pages, and thus
we must issue random page reads. We expect MDB-L to be
faster because of page level access.

10



III. EXPERIMENTS

In this section we present an empirical analysis of the hash
table designs discussed in the previous sections. We evaluate
the performance of the three main schemes discussed in this
article, namely MB, MDB and MDB-L. Broadly, our objectives
are to understand the I/O overheads of various schemes and
their query performance while executing TF-IDF. Additionally,
since SSD disks permit a limited number of clean operations,
it is also important to quantify the wear rate of the devices.
We begin with a discussion of the experimental setup.

A. Experimental Setup

To evaluate our hash table configurations, we used the
DiskSim simulation environment [6], managed by Carnegie
Mellon University; and the SSD Extension for this envi-
ronment created by Microsoft Research [23]. We operated
Disksim in slave mode. Slave mode allows programmers to
incorporate Disksim into another program for increased timing
accuracy. In a simulated environment as opposed to using
a true SSD, we are able to quantify the number of clean
operations and the exact I/O cost of our methods executing
TF-IDF. We conducted our experiments on three different
configurations of the latest representative NAND flash SSDs
from Intel (see Table I for details). Among these, two SSDs are
MLC (Multi-Level Cell) and the other is SLC (Single-Level
Cell) based SSDs. We have chosen from both MLC and SLC
because of their differing characteristics. While MLC provides
much higher data density and lower cost (which makes it
more popular), it has a shorter lifespan and slow read/write
performances. SLC, on the other hand, has faster read/write
performances and a significantly longer lifespan. SLCs also
entail lower internal error rate making them preferable for
higher performance, high-reliability devices [13]. All hash
table experiments involve inserting, deleting, and updating key
value pairs. The size of the RAM buffer is parameterized on
the size of the data segment and expressed as a percentage.
The rationale here is that we believe that an end application
may need to create multiple hash tables on the same SSD.
Moreover, the characteristics of access may vary across appli-
cations (i.e. one may want different RAM buffer sizes for each
hash table). The change segment is likewise parameterized and
the overflow segment for all experiments was set to a minimal
value (one block) since this was found to be sufficient. Key-
value pairs are integer pairs. We conducted our experiments
on a DELL Precision T1500 with an Intel R© Core TM i7
CPU 860@2.8GHz with 8GBs of memory running Ubuntu
10.04. Our code was implemented in C++. The HR data
structure utilized the C++ Standard Template Library [27] for
its implementation. The RAM buffer buckets that correspond to
data segment blocks are arranged inside a C++ vector and their
indexes correspond to their placement on the data segment. For
example, the first block inside the data segment corresponds
to the first block in the RAM buffer. The data segment can be
viewed as an array logically divided into blocks and further
divided into pages.

B. TF-IDF

To demonstrate the efficacy of our methods, we imple-
mented the TF-IDF algorithm, see Section I, using our hash

SSD Configurations
MLC-1 MLC-2 SLC

Capacity 40GB 80GB 32GB
Flash Memory MLC MLC SLC
Page Size (KB) 4 4 4

Sustained Upto 170 Upto 250 Upto 250
Sequential

Read (MB/s)
Sustained Upto 35 Upto 70 Upto 170
Sequential

Write (MB/s)
Read 65 65 75

Latency (μs)
Write 110 85 85

Latency (μs)
Cost (USD) 109.99 224.99 377.79

TABLE I. SSD CONFIGURATIONS

table designs and noted the I/O times for frequency updates
and queries.

C. Data Sets

We use two datasets: a Wikipedia and MemeTracker dump,
which are essentially large text files. Wiki: The first data set
we use is a collection of randomly collected Wikipedia articles.
We chose 100, 000 random wikipedia articles collected from
Wikipedia’s publicly available dump1. Our 100, 000 random
articles were approximately 1GB in size. This dataset con-
tains 136, 749, 203 tokens (keywords) with 9, 773, 143 unique
entries. For the testing of this data set, our hash table was set
to 100MB. On a 128 page per block SSD this amounts to
approximately 205 SSD blocks allocated to the data segment.
To evaluate I/O performance during inserts or updates2 we
simply insert (or update) tokens (corresponding counts) into
the hash table. Statistics and times for various operations
(cleans, merges, stages etc.) are computed and discussed
shortly. To evaluate query performance we first processed 35
million tokens. Subsequently, roughly 100 million words were
inserted. Simultaneously with inserts, we also issued a million
queries interleaved randomly across inserts. A query is a hash
table lookup. In the TF-IDF context, this corresponds to ”how
frequent is a keyword” which allows us to compute the TF-IDF
score of a keyword. Of these queried items, on average (spread
across 10 different random workloads) 933, 139 of them were
present inside the hash table at query time. Meme: The second
data set we report is the MemeTracker dataset discussed in
Section 1. We downloaded the August 2008 dataset. We found
17, 005, 975 unique entries and 402, 005, 270 total entries.
Since this dataset is slightly larger our hash table size was
200MB. On a 128 page per block SSD this translates to ap-
proximately 410 SSD blocks allocated to the data segment. I/O
performance is evaluated by inserting (or updating) tokens just
as with the Wiki dataset. For query performance, the first 130
million words were inserted into the hash table. Subsequently,
the remaining 270 million words were interleaved with about
one million queries. Of these queried items, (spread across 10
random workloads) 959, 731 of them were found inside the
hash table.

1See http://dumps.wikimedia.org/
2As noted earlier deletes are handled as inserts with a negative count.

11



(a) Query times for varying change segment sizes (b) Query times for varying RAM buffer

(c) Query times for all SSD configurations

Fig. 3. Query Times

(a) I/O cost for Wiki dataset (b) I/O for Meme dataset

Fig. 4. I/O Costs

(a) Cleans for Wiki dataset (b) Cleans for Meme dataset (c) Cleans for varying change segment sizes

Fig. 5. Cleans
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D. Query Time Performance

In each graph, the Y-axis is the average time per query in
milliseconds. Results on both Wiki and Meme are provided
in Figure 3. The main trends we observe include: i) the
query time for MB are quite low (does not have a change
segment); ii) the query time for MDB is quite high and
does not drop significantly with reduction in change segment
size; iii) the query time for MDB-L improves dramatically
with a reduction in the change segment size; and iv) query
times for Meme are marginally lower than the query times
for Wiki for both MDB and MDB-L . These trends can be
explained as follows. Query costs for MB are essentially fixed
since they essentially have to combine the counts from the
memory buffer (negligible) and require typically a page read
to access the requisite information from the data segment.
Query costs for MDB require consolidation of information
from the memory buffer (negligible) and from the change
segment (expensive – dominated by block level reads) and
the data segment (usually a single page read). Query costs
for MDB-L require consolidation across the memory buffer
(negligible), the change segment (typically requiring a few
page reads which are significantly reduced as the size of the
change segment is reduced) and the data segment (usually a
single page read). This is reflected in our first experiment,
shown in Figure 3(a) for MLC-1, in which we varied the
change segment while fixing the RAM buffer to 5%. With
regards to the difference between Wiki and Meme query times,
upon drilling down into the data, we find that on average there
are 11.5% more page reads for Wiki. This may be an artifact
of the linear probing costs within both datasets, given the fact
that the ratio of number of unique tokens to hash table size
is slightly higher for Wiki. For the second experiment, again
on the MLC-1 configuration, we fixed the change segment to
12.5% and varied the the RAM buffer for both datasets(see
Figure 3(b)). We observe that with an increase in RAM buffer
size that : i) MB shows a negligible change in average query
time; ii) MDB shows decrease in average query time; iii)
MDB-L shows a significant decrease in average query time
performance; and iv) query times on Meme are typically faster
than those on Wiki. To explain these trends we should first
note that increasing RAM buffer size has the general effect of
reducing the number of stage operations, and thus the average
size of the amount of useful information within the change
segment. Thus the time it takes to consolidate the information
within the change segment in order to answer the query, is
on average lower, for both MDB and MDB-L. For MDB-L
the improvement is more marked because fewer page reads
are required. The explanation for why query times are lower
for Meme are similar to what we observed for the previous
experiment. The third experiment we performed on query time
performance was to evaluate the performance of the three SSD
configurations on the Wiki dataset shown in Figure 3(c). Here
the RAM buffer was set to 5% and the Change Segment was set
to 12.5%. The results are along expected lines in that average
query times are slightly better on MLC-2 and SLC over MLC-
1 for the MDB method. The superior read performance for both
page level and block level operations are the primary reason.
This difference is marked in the case of MDB but for both
MDB-L and MB the difference is negligible. MDB requires a
block level read for a query and the performance difference
for this type of operation is more pronounced for MLC-2

and SLC, over when compared with MLC-1. To conclude we
should reiterate that the query performance times we observe
here are for our update-intensive query workload where we
interleaved queries with inserts (averaged over multiple runs).
In this environment the query time performance of MB is
always the fastest. For reasonable parametric settings MDB-L
typically approaches MB in performance while MDB is always
an order of magnitude worse in terms of performance. We
should note that we also evaluated query times for all three
methods in more stable settings (few updates/inserts) In such
a stable setting we found that the query times for all three
methods was identical. The query cost essentially boils down
to a page read or two on the data segment (since the change
segment is empty and does not factor). Furthermore, MDB is
bounded by a single block read while the query time of MDB-L
may vary. However, as our results indicate, the pointer guided
page level accesses of MDB-L provide efficient read access
that outperforms MDB.

E. I/O Performance

In this section we examine the I/O performance of the three
strategies. To ignore the impact of queries in this section, our
workloads for both datasets simply insert all the tokens or
words into their respective hash tables. In our first experiment,
we report overall I/O cost from the perspective of the SSD for
the three SSD configurations for both Wiki (see Figure 4(a))
and Meme (see Figure 4(b)). The RAM buffer is set to 5%
and the change segment is set to 12.5% in this experiment.
The main trend we observe are that both MDB-L and MDB
require comparable yet significantly lower I/O costs than
MB. This is primarily attributable to the presence of the
change segment which enables sequential (MDB-L) or semi-
random writes (MDB). We trade block level operations for
page level operations. In our analysis of block and page level
operations, MDB-L had more page level operations and fewer
block level operations than MDB due to the linear change
segment. This gives MDB-L an edge of over MDB. in our
deeper analysis we verified some of the intuitive ideas of our
designs: as we increase the size of the change segment, we
decrease the number of block level merge() operations and
as we increase the RAM buffer, we reduce the number of
stage() operations. Additionally, as we shall see shortly, MB
requires a large number of erasures which also contribute to
the overall I/O cost. Another trend we observe is that among
the SSD configurations SLC and MLC-2 offer comparable
performance with a slight edge to SLC. MLC-1 is quite a
bit slower. This is primarily attributable to the superior write
bandwidth of SLC and MLC-2. Finally we observe that the
overall I/O times are higher for Meme over Wiki (larger
dataset and larger hash table). Not shown in our reports are
the performance measures for a hash table without the use
of a buffer. The advantage of this scheme is fast query times
because queries are only page level reads on the data segment.
However, results show that such a hash table would induce
1,680,323 cleans for the Wiki dataset and 6,669,932 cleans
for the Meme dataset. The I/O performance are on the order
of 615 times slower on the Wiki dataset and 1500 times
slower for the Meme dataset for reported times for the results
in Figure 4. This increase is caused by cleaning time and
random page writes. It is clear that there is a benefit from
our designs. Summing up the I/O performance it is fair to say
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that for most reasonable parameter settings MDB and MDB-
L significantly outperform MB in terms of the cost of I/O
from the perspective of the flash device. Additionally it should
be noted that the merging operation within both MDB and
MDB-L will happen completely within the SSD (allowing for
an overlap of CPU operations – not reflected in any of the
experiments) whereas a merge for MB and staging for the other
two methods will require some CPU intervention. Also note
that an MB merge operation is significantly more expensive
than an MDB or MDB-L stage operation (random writes versus
semi-random/sequential writes).

F. Cleans

In our next experiment we take a closer look at the number
of clean operations required by these methods for both datasets
(see Figure 5). Our graphs display the variation of RAM buffer
size for both datasets and the variation of change segment size
for the Wiki dataset along the Wiki dataset for the X-axis.
The Y-axis is the amount of erasures. The main trends and
explanations for these trends are: i) the number of cleans goes
down with increasing RAM buffer sizes since there are fewer
stages and merges as shown in Figure 5(a); ii) the number
of cleans is significantly higher for MB compared to that of
the other two methods because the change segment provides
an extra level of buffering for MDB and MDB-L as shown
in Figure 5(b); iii) the number of cleans increases for MDB
and MDB-L as we decrease the size of the change segment
because the change segment fills more often and thus there
are more merges. MB does not use the change segment so it
stays a constant value; and iv) the number of cleans for MDB
and MDB-L are very similar with MDB-L being slightly better.
The reduction for MDB-L is clearly attributable to the linear
change segment design.

IV. CONCLUSIONS

Hash tables pose a challenge for SSDs because of their
random write access patterns. Traditional IR algorithms, such
as TF-IDF rely on hash tables and may suffer under a poor
hash table design. TF-IDF requires extensive updating of term
frequencies. Updating an entry inside of a disk hash table may
trigger an entire erasure of an SSD block. Repeatedly updating
a hash table can be detrimental to the limited lifetime of the
underlying SSD. A simple hash table without buffering can
be implemented. It has superior query time but it induces a
substantial amount of cleans and I/O cost. From our experi-
ments, we believe that an SSD friendly hash table will have a
RAM buffer and a disk based buffer that supports semi-random
writes. These features will increase the locality of updates and
reduce the I/O cost of the hash table for both low and high end
SSDs. Overall our results reveal that when one accounts for
both I/O performance and query performance, MDB-L seems
to offer the best of both worlds on the workloads we evaluated
for reasonable parameter settings of change segment size and
RAM buffer size. Using MDB-L, we observe 1500 times
speedup in execution time and over 6 million fewer erasures
when compared to a naive implementation. In the future, we
would also like to extend our design to hash functions that
do not rely on the mod operator (e.g. extendible hashing) and
examine various checkpointing methods.
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