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ABSTRACT

Hardware Error Rate Characterization with Below-nominal Supply Voltages

Ke Liu

Power dissipation and energy consumption have become one of the most important prob-

lems in the design of processors today. While lowering the operational voltage can reduce

power consumption, there are limits imposed at design time, beyond which hardware

components experience faulty operation. However, not all computations and all data in

a workload need to maintain 100% fidelity. In this thesis, we explore the idea of Elastic

Fidelity, that judiciously lowering the voltage to trade-off reliable execution for power con-

sumption. By steering each computation to different functional and storage units, Elastic

Fidelity Computing obtains power and energy savings while reaching the reliability targets

required by each computational segment. We have characterized some execution units to

build a correlation between supply voltage and error rate. We also present a simulation

of faulty operation by injecting errors to a JPEG decompression program. The results

shows that some execution unit can tolerate 50% of supply voltage without experiencing

any error. It indicates great potential for applying Elastic Fidelity to more applications.

This work was partially supported by NSF award CCF-1218768.
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CHAPTER 1

Introduction

Power consumption is one of the most stringent constraints in processor design. Al-

though transistor feature sizes are still scaling, voltage scaling has nearly stopped due to

high leakage currents associated with low threshold voltages. This has lead to a dramatic

increase in power density with decreasing feature size[1]. But the cooling limits remain

unchanged across technologies, while transistor counts continue to grow exponentially.

As a result, we can no longer power all transistors on chip; rather, we can power only a

decreasing fraction of them.

At the same time, the increasing demand for computational power comes at the cost

of higher aggregate energy consumption. The computers’ insatiable appetite for energy

has made IT industry a nonnegligible contributor for greenhouse gas emissions. Google’s

data centers consume 260 million watts today, which is about a quarter of the output of

a nuclear power plant [2]. Similarly, the power gap between mobile phone processor and

battery has greatly broadened over the last decade, resulting in shortened stand-by time.

The power consumption is high in part because the operating voltage of processors

is determined by conservative guardbands based on worst-case scenarios. A guardband

refers to the timing differential inserted into the hardware design to allow for signals

to communicate without being perfectly aligned. However, this design approach results

in significant overheads in both power and performance[3]. This leads to an interesting

question: what if we let go of these guardbands and allow components of the processor
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to fail sometimes, and accommodate the errors at the architectural and software levels?

By following laws of transistor physics, keeping all else constant, decreasing the operating

voltage (Vdd) reduces power consumption at a quadratic rate, at the expense of some

timing errors. Prior research shows that every large CMOS chip has two voltage operating

points: the rated voltage point and the critical voltage point [4, 5]. This leads to three

operating regions for the processor. First, when the supply voltage is at or above the rated

voltage, the processor runs at full accuracy without errors. Second, when the processor

operates at a supply voltage between the rated and critical points, small-scale errors

emerge due to timing violations in worst-case situations. Finally, operating at a voltage

beyond the critical point leads to massive errors.

This thesis presents the idea of Elastic Fidelity. The basic approach is to occasionally

operate processor components (e.g., functional units) at the supply voltage between rated

and critical operating points, to attain significant reductions in power while meeting the

reliability requirements requested by each section of the executing application. The er-

rors originated due to this are accommodated at the software layer by exploiting the fact

that different sections of the code require variable reliability guarantees to present accept-

able results to the user. Portions of the application that are error-sensitive are executed

at full reliability, while the error tolerant ones run on variable accuracy to produce an

acceptable result. Similarly, error-tolerant sections of the data are stored on low-power

units that allow for the occasional error by operating at low voltage levels and forego-

ing error-correction techniques (e.g., ECC), while the error-intolerant data are stored on

units providing full reliability. By not treating all code and all data the same from the

viewpoint of reliability requirements, Elastic Fidelity Computing exploits sections of the
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computation that are error tolerant to lower power and energy consumption, without

negatively impacting executions that require full reliability.

To explore the feasibility of Elastic Fidelity, this thesis evaluates the potential limit of

cutting supply voltage and the resulted error rate. Start from OpenSPARC T1 processor

at RTL level, some modules of interest are synthesized using Synopsys Design Compiler.

Then Mixed-signal simulations are performed at circuit level, to characterize the error

rate with each given supply voltage. Simulation results show that for some components,

the supply voltage can decrease to as low as 50%, before noticeable errors start to appear.

The reminder of the thesis is organized as follows. Chapter 2 introduces background

and related works for Elastic Fidelity and hardware characterization. Chapter 3 discusses

the underlying idea of error tolerance and Elastic Fidelity. Chapter 4 describes the ex-

perimental methodology used to conduct the simulations. Chapter 5 reports the results

of the simulations. Finally, Chapter 6 analyzes the results and Chapter 7 concludes.
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CHAPTER 2

Background

This chapter introduces preliminary concepts used throughout this thesis. Section

2.1 starts with a brief discussion on the power and energy consumption of VLSI circuits.

Section 2.2 talks about timing parameters and requirements. The contents in Section 2.1

and Section 2.2 also appear in [6]. Section 2.3 introduces processor architure. Specifically,

the OpenSPARC model used in the thesis will be presented. The description about the

model is obtained from [8]. Section 2.4 discusses related work.

2.1. Power and Energy Consumption of VLSI Circuits

Power and energy consumption plays an important role in all design hierachies. It in-

fluences many critical design decisions, such as the maximum operating frequency, power

supply capacity, supply line sizing, packaging and cooling requirements[6]. Power con-

sumption can be divided into two components: dynamic power and static power. Dy-

namic power occurs only during transitor switchings, while static power is persistent due

to leakage current.

2.1.1. Dynamic Power

Consider a simple situation in which a PMOS transitor is driving a load capacitor

CL, as shown in Figure 2.1. Assume that initially, Vout is 0. When the capacitor CL gets

charged through the PMOS transitor, Vout rises from 0 to VDD, and it stores a certain
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Figure 2.1. Dynamic power consumed during transtion[6]

amount of energy. Meanwhile, some amount of energy is dissipated by the PMOS transitor

during the transition. A precise measure of the energy can be derived as follows. Let us

consider the energy EV DD taken from the power supply VDD. It is the integral of its

voltage and current over time.

(2.1) EV DD =

∫

∞

0

iV DD(t)VDDdt = VDD

∫

∞

0

CL

dvout

dt
dt = CLVDD

∫ VDD

0

dvout = CLV 2

DD

Similarly, the energy store in EL is

(2.2) EL =

∫

∞

0

iV DD(t)Voutdt =

∫

∞

0

CL

dvout

dt
voutdt = CL

∫ VDD

0

voutdvout =
CLV 2

DD

2

This shows that a half of the energy from supply is stored in EL, while the other

half is dissipated away during transition. Assume that EL is discharged each time Vin

switches from low to high, then every switching cycle takes an fixed amount of energy.
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Figure 2.2. Direct-path current in CMOS inverter[6]

If the switching frequency is f0→1 times per second, the dynamic power consumption is

given by

(2.3) Pdyn = CLV 2

DDf0→1

Notice that VDD has a quadratic effect on Pdyn.

Another type of dynamic power is the Direct-Path Current Dissipation. Consider an

CMOS inverter in Figure 2.2 for example. In actual designs, Vin has a finite slope and

there exists a short period in which the PMOS and NMOS transistor are conducting si-

multaneously. As a result, a direct-path current will flow from VDD to VSS. The resulting

current spikes can be approximated as triangles and assumes that the inverter is sym-

metrical in its rising and falling responses, the energy consumed each switching period
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is

(2.4) Edp = VDD

Ipeaktsc

2
+ VDD

Ipeaktsc

2
= tscVDDIpeak

where tsc is the time period that both transistors are conducting. It is propational to the

Vin transtion time. Ipeak represents the maximum value of the direct-path current, and it

is determined by the saturation current of the devices.

2.1.2. Static Power

The static power consumption of a circuit is defined as

(2.5) Pstat = IstatVDD

where Istat is the current that flows between the supply rails when no switching is taking

place. Ideallly, when CMOS circuit is in steady state, either the PMOS or NMOS tran-

sistor should be in off condition, and no current can flow through. However, this ideal

assumption has overlooked two factors.

First, a leakage current can flow through the reverse-biased diode junctions of the

transistor, which are located between the source or drain and the substrate. This leakage

current is very small in general. However, it is an exponential function of junction temper-

ature. At 85◦C, the leakage current increases by a factor of 60 over the room temperature

value[6]. This, again, imposes an restriction on the power dissipation and cooling system.

Second, and more substantially, a leakage current called Subthreshold Current exits

when gate-source voltage is below the threshold. In such a condition, a weak-inversion

layer under the gate will provide carriers for the current. If the threshold voltage is small
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in absolute value, it is easier to form a weak-inversion layer, and hence the larger the

leakage current. In the past, the subthreshold conduction of transistors was very small,

but as transistors scale, the threshold voltage has been significantly decreased. For a

technology generation with threshold voltage of 0.2 V, leakage can exceed 50% of total

power consumption[7]. On the other hand, given a certain supply voltage VDD, scale the

threshold voltage can improve the transistor rise/fall time, which is a desirable goal in

circuit design. Thus, the threshold voltage can serve as an knob for performance-power

trade-off.

Putting it together, the total power consumption is the sum of the dynamic and static

part. Depending on the problem at hand, the total power can be measured in different

ways. When considering supply line sizing, the peak power Ppeak gives an indication of

what the supply line has to sustain.

(2.6) Ppeak = ipeakVsupply = max[p(t)]

When studing heat dissipation, one usually chooses the average power Pavg.

(2.7) Pavg =
1

T

∫ T

0

p(t)dt =
Vsupply

T

∫ T

0

isupply(t)dt

Other metrics such as power-delay product and energy-delay product are also commonly

used to evaluate circuits.

2.2. Timing Requirements for Circuit Design

The timing requirements for conbinational circuit is straightforward. The delay of

the block is simply the sum of gate propagation delays tplogic along the critical path. To
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Figure 2.3. Setup time, hold time, and propagation delay of a synchronous register[6]

guarantee observing the correct value, one has to wait for tplogic after feeding input values.

When it comes to sequential circuit, the problem is more complicated. We will focus on

synchronous sequential circuit in this section.

In order to latch the input, there are three important timing parameters a register

has to meet. There are shown in Figure 2.3. The setup time(tsu) is the minimum time

an input data has to keep steady before CLK edge comes. The hold time(thold) is the

minimum time the input data has to hold steady after the CLK edge comes. Then, the

input data is copied to the output after a propagation delay(tcq).

Once all timing information for the registers and the combinational circuits is available,

we can derive the system level timing constraints. The clock period T must give enough

time for the combinational block to settle, and for registers to latch and copy the data.



21

Figure 2.4. Two registers driving by unbalanced clock path

Assume the worst case propagation of combinational circuit is tplogic, T must satisfy

(2.8) T ≥ tcq + tplogic + tsu

Moreover, the hold time for the register needs to be

(2.9) tcdregister + tcdlogic ≥ thold

where tcdregister is the minimum propagation delay of the register, and tcdlogic is the mini-

mum delay of the combinational block.

The above timing specification is based on the assumption that the clock is ideal across

all operating points and over all operating time. However, this is not the case. Consider

the data transfer between two registers R1 and R2 as shown in Figure 2.4. If the two

clock lines are not balanced, meaning that they are different in either length, resistance,
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or capacitance, clock signals going through them will experience different delays. The

spatial variation in arrival time of a clock transition on an integrated circuit is commonly

referred to as clock skew. It is constant from cycle to cycle.

The clock skew has important effects on circuit performance and functionality. If

CLK2 lags CLK1 by clock skew δ, then the time available for a signal to propagate from

R1 to R2 is increased by the skew δ. Notice δ here can be either positive or negative. The

constraint on the minimum clock period can be rewritten as

(2.10) T + δ ≥ tcq + tplogic + tsu

The hold time now has to satisfy

(2.11) tcdregister + tcdlogic ≥ thold + δ

Clock can also vary temporally, on a cycle-by-cycle basis. This variation is called clock

jitter, which is often specified at a given point. Jitter is a zero-mean random variable.

The sources of jitter include variation in clock-signal generation, power supply variation,

and capacitive coupling. Jitter imposes extra restriction on clock period. In the worst

case scenario, CLK1 arrives earlier with time tjitter, and CLK2 is delayed by tjitter. In

this case, T has to satisfy

(2.12) T − 2tjitter ≥ tcq + tplogic + tsu



23

Combining clock skew and jitter together, we have

T ≥ tcq + tplogic + tsu − δ + 2tjitter(2.13)

thold < tcdlogic + tcdregister − δ − 2tjitter(2.14)

2.3. OpenSPARC T1 Processor Architecture

A processor is the heart of a computer. It executes programs and communicates with

other components such as memory and I/O. The fundamental operation of a processor

is to execute a sequence of instructions from system or user programs. The execution

process of an instruction can be decomposed into five basic stages: fetch, decode, execute,

memory, and writeback. These stages involve independent hardware resources and can

be overlapped over consecutive instructions. Such a design is called a pipeline. It allows

instructions to go through one stage each clock cycle(sometimes an instruction needs mul-

tiple cycles), and one instruction can be committed each cycle. Today, designs typically

employ a much larger pipeline-depth, and instructions can execute in an order different

than the order they are issue. However, the basic concept of pipeline design (overlap

instructions to gain high thoughput) remains valid.

The processor model we used in the thesis is called OpenSPARC T1. OpenSPARC is

an open-source project that started in December 2005. It provides register-transfer level

verilog code of the full 64-bit, 8 cores processor OpenSPARC T1. Each SPARC core has

an instruction cache, a data cache, and fully associative instruction and data translation

lookaside buffers. The eight SPARC cores are connected through a crossbar to an on-chip

unified level 2 cache[8]. The block diagram of OpenSPARC T1 is shown in Figure 2.5.
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Figure 2.5. OpenSPARC T1 processor architecture[8]

Each SPARC core is hardware multi-threaded to support four threads. It has a single

issue, six stage pipeline. These six stages are fetch, thread selection, decode, execute,

memory, and write back. The structure of the SPARC core pipeline is shown in Figure 2.6.

Each SPARC core is implemented by the following units:
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Figure 2.6. SPARC core pipeline[8]

1. Instruction fetch unit(IFU) includes the fetch, thread selection, and decode pipeline

stages.

2. Execution unit(EXU) includes the execute stage of the pipeline.

3. Load/store unit(LSU) includes memory and writeback stages.

4. Trap logic unit(TLU) includes trap logic and trap program counters.

5. Stream processing unit(SPU) is used for modular arithmetic functions for crypto.

6. Memory management unit(MMU).
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7. Floating-point frontend unit(FFU) interfaces to the FPU.

A single floating-point unit(FPU) is shared by all SPARC cores. It is composed of

sub-units including:

1. Addition unit(FPU ADD) that performs adds, subtracts, compares and conversion.

2. Multiplication unit(FPU MUL)

3. Division unit(FPU DIV)

Each sub-unit can take 32-bit or 64-bit operands, and has independent execution pipelines.

The CPU-cache crossbar(CCX) manages the communication among the eight CPU

cores, the four L2-cache banks, the I/O bridge, and the floating-point unit. These func-

tional units communicate with each by sending packets, and the CCX arbitrates the

packet delivery[8].

SPARC T1 has two levels of caches on chip. The L1 D-cache is included in the

load/store unit, and has 8K capacity. The L1 I-cache is managed by the instruction fetch

unit, and has 16K of data. The L2 cache is 3 Mbytes in size and are composed of four

symmetrical banks[8].

2.4. Related Work

There has been in depth research in modeling the behavior of hardware due to voltage

scaling and process variability [15, 16, 17], along with techniques to prevent them [18,

19, 20]. Designs such as Razor [21] perform error correction at the hardware through

the use of additional circuitry, while [5] corrects the errors at the algorithmic level. The

benefits of these techniques in the scope of power reduction are limited due to their error
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recovery overheads. Moreover, they are orthogonal to Elastic Fidelity and can be used

synergistically with it to lower the power and energy consumption even further.

The most significant works related to Elastic Fidelity appear in [30, 31, 32] which ag-

gressively scale supply voltage and allow faulty operation on execution and storage units.

In the framework of [30], fidelity requirement is denoted by programming language at a

coarse-grain level, while we believe multiple fidelity levels will provide the user with more

confidence and freedom in trading off between accuracy and power. More importantly,

there is a lack of hardware simulation in these projects, and they assume low power is

applied to all execution units. We choose to characterize each unit and select the most

resilient units.

On the software side, a considerable amount of research has been performed on the

effect of single event upsets on software behavior [24, 25, 9, 26, 27] due to the rising

reliability issues resulting from decreasing feature size. However, we find that not much

has been done in the case of continued errors as presented in this paper. Unlike single

event upsets, these errors occur continuously due to faulty hardware (as a result of voltage

over-scaling in this case.)

Finally, research on empathic systems [28, 29] considers human perception and user

satisfaction to guide power optimizations. Contrary to our work, empathic systems do not

trade-off accuracy for power; rather, they trade-off user satisfaction for power. However,

similarly to empathic systems, our output quality metrics for the applications we study in

this paper are also exploiting human perception to arrive at a result that is good enough,

but not necessarily perfect.
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CHAPTER 3

Error Tolerance and Elastic Fidelity

Traditionally, program execution is said to be correct if and only if the underlying

computations are perfect. However, a program may still appear to execute correctly if it

returns acceptable results from the users’ perspective, even if there is some noise in the

data or inaccuracies in the computation [9].

Prior work such as that in [9] shows that the level of error tolerance is application-

dependent and depends on how accurate a program’s output needs to be. There are ap-

plications which are highly resilient inherently and there are others which are very little.

Important examples of highly-resilient applications come from the class of soft computing.

Unlike hard or exact computing, soft computing takes advantage of the tolerance of impre-

cision, uncertainty and approximation for a given problem resulting in acceptable rather

than exact results [10, 11]. Multimedia applications offer a very interesting example of

soft computing. These applications primarily depend on human perception and allow

considerable leeway in terms of accuracy. Moreover, such applications are typically in-

cluded in modern mobile platforms and are heavily exercised by users. Similarly, there are

applications that already assume unreliable substrates and already have error-correcting

capabilities (e.g., networking applications [12]). Other examples include Artificial Intel-

ligence applications on forecasting, inference and data mining, scientific computing (e.g.,

simulations of oceanic currents, weather forecasting), or computations on already noisy
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data (e.g., sensor readings). Such workloads tend to perform computations on approxi-

mations, and through multiple iterations narrow down to a set of results that are within

a qualitative threshold according to the user requirements. On the other hand, other ap-

plications rely on exact numerical results and are generally intolerant of errors. Examples

include memory management in the operating system, code compilation and lossless data

compression.

Looking further into error-resilient applications, we envisage that different portions

of the execution offer different error tolerance. For example, pointer operations and

control logic such as conditional and branch statements are highly sensitive to errors.

A corrupt pointer would usually lead to a segmentation fault while a corrupt control

would notably disorder the program execution. On the other hand, operations involving

standard arithmetic computations such as matrix processing and decoding are generally

error-tolerant and have a relatively benign effect on the final result of the program.

In view of these observations, Elastic Fidelity varies the reliability of the underlying

hardware according to the application needs at each point in time. Portions of the ap-

plication that are error-sensitive are executed at full reliability, while the ones that are

error-tolerant are run on variable accuracy to produce an acceptable result to the end

user. The reliability of the underlying hardware can be varied by running it on a region

between the rated and critical voltage points, resulting in power savings. This scheme can

be implemented at the granularity of a core, in both single and multi-core systems. In the

former case, the operation of the core can be dynamically changed between full (100%)

and variable accuracy, according to the requirements of the executing code segment. In

the latter case, certain cores run on full accuracy to accommodate the error-sensitive
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Figure 3.1. Implementing Elastic Fidelity using multiple execution units

operations, while others run on variable accuracy to compute error-tolerant operations.

Similarly, Elastic Fidelity can be implemented at a finer granularity by varying the fi-

delity guarantees of individual functional units or storage elements within a single core.

Figure 3.1 illustrates such an example with multiple execution and storage units.

From the viewpoint of software design, Elastic Fidelity can be implemented through

programming constructs. A programmer specifies which variables and code segments are

allowable to hardware errors and their tolerance margins. In turn, the compiler maps
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these constructs to specialized instructions that direct the core to steer the computation

to a functional unit with a specific reliability level, by changing its operating voltage.

On the hardware end, dynamic voltage scaling and calibration circuitry minimize the

power consumption at a given reliability level, based on experimental models of hardware

behavior at each voltage level. The fidelity requirements of each code/data segment can

be estimated using feedback optimization tools.

Let us now take a close look at what happens inside an execution unit when the

supply voltage is below the rated point. As we know, decreasing the supply voltage has

a negative impact on the circuit performance. More specifically, the rise/fall time of each

gate increases, and a signal takes longer time to propagate to the outputs of combinational

blocks. When the propagation delay is increased beyond the clock period, registers will

face the risk of latching immature data. If immature data happen to be the same as correct

data, which arrive after the clock edge, the user will not perceive an error. However, if

they are different, a timing error appears.

In order to get an indepth perspective of the feasibility of Elastic Fidelity, and exploit

the full potential of error-resilience, two categories of studies have to be done. First, at

the hardware level, we need to characterize the execution units of interest, and establish

the correlation between supply voltage and error rate. Since each execution unit tends to

have a distinct critical path, and hence different timing slack, lowering the supply voltage

may result in a different rate of timing errors. The result will help us find out which

units are more resilient, and to what extent we are allowed to lower the voltage. This

thesis mainly studies this topic. Second, we need to understand how errors in different
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code/data segments under reduced reliability conditions impact the overall accuracy of

the end result. The next chapter will introduce the methodology in detail.
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CHAPTER 4

Experimental Methodology

This chapter describes the methodology used in analysing hardware error rate and

software error tolerance. We take three execution units from the OpenSPARC T1 pro-

cessor RTL model, and synthesize them using Synopsys tools. Mixed-signal simulation

is conducted at the netlist level. For the software side, we refer to the experiment con-

ducted by fellow researcher at Northwestern University. In the research, we manipulate

the assembly code of a JPEG decompression program. Errors are generated by software

wrappers at bit level with designated probability. Then the program output is compared

against error-free counterpart.

4.1. Characterizing Hardware Components

4.1.1. Execution Units Specifications

The three execution units we simulate are FPU ADD, EXU ALU, and FPU MUL.

They cover both integer and floating-point operations. OpenSPARC T1 is designed to

operate at 1.2GHz. However, since only a 90nm cell library is available to our research

project, which lags behind in technology generations, we are not able to simulate the

processor at 1.2GHz. Instead, the simulated operating frequency is set at 500MHz, which

is the maximum frequency without any timing violations under the full supply voltage.

With 500MHz, all these three execution units can generate correct results at the full

voltage level. The detail is shown in Table 4.1.



34

Execution Unit Operations It Performs Execution Delay

FPU ADD floating-point addition,floating-point subtraction,
floating-point comparison

10ns

EXU ALU integer addition, logic AND, logic OR, logic XOR,
logic MOVE

2ns

FPU MUL floating-point multiplication 17.5ns

Table 4.1. Simulated executing units

4.1.2. Synthesis

We use Synopsys Design Compiler(Version F-2011.09-SP3) and SAED90nm cell li-

brary to synthesize execution units. Table 4.2 lists some basic parameters of SAED90nm

library. OpenSPARC provides a PERL script which contains the setup and constraint for

Techology 90nm

Typical Voltage 1.2V

Operating Temperature 25◦C

Operating Frequency 300MHz

Number of Cells 340

PMOS Threshold Voltage -0.276V

NMOS Threshold Voltage 0.397V

Table 4.2. SAED standard cell library

compiling and optimization. We have modified it for our need and use it for synthesis.

An synthesized EXU ALU netlist is shown in Figure 4.1.
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Figure 4.1. Gate level schematic of EXU ALU

4.1.3. Test Benches

Each execution unit takes two 64-bit operands as input, and can perform different

operations on them. Thus, the evaluation space is huge (approximate 3.5 × 1038 testing

points for each operation) and it is impossible to cover all of it. Moreover, when timing



36

error occurs, the output we observe is likely to be the result latched by preceding input.

This means the output will not only depend on current input, but also operands given

before. To accommodate this possibility, different input sequences have to be tested, and

the evaluation space will be further expanded.

Based on these concerns, to get a comprehensive and unbiased characterization, we

design the test bench as follows.

1. In Input vector 1, both operands are set to be 0. One input vector refers to a pair

of operands that are given to the execution unit together. Both operands are in the

format of long long unsigned integer, which is 64-bit on our machine. Then we use two

nested loops to increment operand A and operand B. In the inner loop, we increase

operand A by a certain increment Vincr, which is also a long long unsigned number.

In the outer loop, we increase operand B by the same value Vincr. Vincr is decided by

both the size of the evaluation space (which is 264 for one operand in our experiment)

and the number of input vectors. We walk through the entire evaluation space with a

fixed granularity indicated by the value of Vincr.

2. All input vectors (both operand A and B) are given a random variation Vrandom, where

|Vrandom| < Vincr. Notice that, during this step, we have unintentionally converted the

input vector to double precision floating-point format by implicit type casting, and

later they are converted back to long long unsigned before the assignment. This leads

to the undesirable lost of precision. As a result, lower bits (bit0 to bit8) in almost all

operands are always ’0’. However, we believe this will not affect the correctness of our

experiment. We will explain the reason in next chapter.
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3. We store all input vectors in binary formats. In this case, although they are generated

as long long unsigned integers, the execution unit will view them as floating-point

numbers, integers, or boolean values according to the type of the particular execution

unit.

4. Randomly permutate all vectors.

Notice that for FPU ADD, we only simulate floating-point addition, since floating-

point subtraction and comparison are similar with addition in nature. We create 100,000

test vectors for FPU ADD and EXU ALU, and 1,000 vectors for FPU MUL. Figure 4.2

shows a scatter diagram of all input vectors for FPU ADD in log space. As we can

see, input vectors are uniformly scattered in the range of 10−302 and 10302, which is the

arithmetic range of a double-precision floating-point number.

4.1.4. Mixed-signal Simulation

We configure Synopsys VCS(F-2011.12) and HSIM(F-2011.09-SP1) to run mixed-

signal simulations. Both Verilog model and SPICE model of all cells are given to the

simulator. The SPICE model contains physical information of both the gate and the

composing transistors. It provides the simulator with enough details to simulate below-

nominal voltage effects. Signals are modeled in digital between each gate, and in analog

within gates. The same sequence of randomly permutated input vectors are simulated 12

times, with voltage sweeping from 0.1V to 1.2V. Then the outputs of voltage level 0.1V

to 1.1V are compared to the one from full voltage level (1.2V). If lowering the voltage has

no impacts on the result, they will be identical. Otherwise, error rate of the result will

be computed.
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Figure 4.2. Scatter diagram of all input vectors. The X-axis and Y-axis are
the exponent of operand A and operand B, respectively. One dot on the
diagram indicates one input vector

4.2. Software Error Tolerance

This experiment is done by Georgios Tziantzioulis [33]. We simulate a multimedia

JPEG decompression program for the experiment. In its assembly code, we only target

arithmetic instructions. Moreover, all pointers and controlling variables are excluded to

ensure program stability. The types of instructions we inject are list in Table 4.3. The error

injection is implemented by software wrappers. These software wrappers model hardware
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Instruction Function

add Adds two values
mov Writes a value to the destination register
mul Multiply two signed or unsigned 32-bit values
orr Performs a bitwise OR of two values
rsb Subtracts a value from a second value

Table 4.3. Injected instructions

timing errors by flipping one data bit in targeted instructions at a given probability (error

rate).

The use of software wrappers allows flexibility in inserting errors in selective locations

and helps us to study the behavior of the application not only when errors are injected in

the entire computation, but also when they are injected during the execution of specific

functions. To gain finer granularity, we vary the bit positions we flip, and the results are

collected separately.

After error injection is done, we take a JPEG image as a sample, and run it through

the decompressor. The quality of the decompressed file is then quantitatively measured

in Peak Signal to Noise Ration(PSNR).
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CHAPTER 5

Results and Analysis

In this chapter, we present experiment results of execution units characterization and

software error injection. In section 5.1, the overall error rate, bitwise error rate and

operand-related error rate are shown. Section 5.2 shows decompression quality with errors

injected at different bit positions and with different probabilities.

5.1. Characterization of Execution Units

5.1.1. Overall Error Rate

We define two types of overall error rates. The first one is Result Error Rate. If any

bit in an execution result is flipped (regarding of result from full voltage simulation), that

result is considered wrong. Then the number of wrong results over the number of all

results is the result error rate. The second type of error rate is the Bit Error Rate. It is

simply the number of flipped bits over the number of all bits.

The overall error rates of three execution units are shown in Figure 5.1, Figure 5.2,

and Figure 5.3.

As we can see, three execution units exhibit very different behaviours with below

nominal supply voltage.

For FPU ADD and FPU MUL, timing errors occur right after we decrease the voltage,

and error rate increases with lower voltages. When it comes to 0.6V or below, the result

error rate is close to 100%, and bit error rate approaches 40%. Notice, when the bit error
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Figure 5.1. Overall error rate of FPU ADD

Figure 5.2. Overall error rate of EXU ALU
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Figure 5.3. Overall error rate of FPU MUL

rate reaches 50% or above in this experiment, it indicates the circuit does not function

any more.1 This indicates that almost all circuit paths have failed in timing. On the other

hand, EXU ALU is quite insensitive to lowering voltages. We do not see errors until the

supply voltage drops to 0.4V.

The reason behind this is that floating point operations have multiple computation

stages, and they tend to have long delays and small slacks. As long as the supply voltage

is below rated point, timing errors start to occur. However, EXU ALU performs relatively

1It can be understood as follows. First let us assume that the probability of ’0’s and ’1’s in the correct

results are equal. If the simulation results are randomly generated and uniformly distributed, since each

bit is binary, the bit error rate should be 50%. Now the simulation results are actually correct value

disturbed by some timing errors, and the timing errors have a value latched by preceding input. Since we

have randomly permutated all input vectors, the preceding input have an equal probability to generate

a ’0’ or a ’1’ on each bit. Therefore, in the worst case that all bit positions have timing errors, we will

observe a ”random” value on each bit, which will give us 50% bit error rate. If the probability of ’0’s and

’1’s are not equal, the worst error rate can be the higher one of the probability of ’0’ and the probability

of ’1’. We will see such a case later.
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Figure 5.4. Bitwise error rate of FPU ADD

simple operations. For example, an AND operation can be implemented by parallel AND

gates between two operands. The delay of the combinational block is very small, and the

voltage margin is larger. This explains why until the voltage reaches 0.4V, which is the

threshold voltage of the transistors, no timing error occurs on EXU ALU.

5.1.2. Bitwise Error Rate

Next, the error rates on each bit position are presented. Figure 5.4 shows the result

for FPU ADD. Figure 5.6, Figure 5.7, Figure 5.8, Figure 5.9, and Figure 5.10 show per

bit per operation result of EXU ALU. Figure 5.11 is the result of FPU MUL.

The error rate of FPU ADD can be divided into three segments. From bit 0 to bit

8 the error rate is between 10% to 20%. From bit 9 to bit 51 the error rate is relatively
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Figure 5.5. The probability of ’1’s on each bit position in the correct result
from FPU ADD

Figure 5.6. Bitwise error rate of EXU ALU ADD operation
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Figure 5.7. Bitwise error rate of EXU ALU AND operation

Figure 5.8. Bitwise error rate of EXU ALU OR operation
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Figure 5.9. Bitwise error rate of EXU ALU XOR operation

Figure 5.10. Bitwise error rate of EXU ALU MOVE operation



47

Figure 5.11. Error rate on each bit location of FPU MUL

high and steady for most voltage levels, then it dives at bit 52. To understand this result

better, let us look at Figure 5.5 first.

As it shows, the probability of ’1’s in the correct results is not the same across all bit

positions. The fact that the probability is low in lower bits is caused by lost of precision

during type casting (as mentioned in the previous chapter). This makes the lowest several

bits in the operands always ’0’, and it is more likely for a result to contain ’0’ in lower

bits. If we look at the bits unaffected by the type casting precision loss, the bit error

rates remain constant for a given voltage. This is a strong indicator that the low order

bits that are now erroneously cleared by the type casting operation, would also show

the same error rate as the other bits. However, the affected bits are the lowest bits in

mantissa, and they have less weight on the floating-point value. The critical timing path
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are usually composed of other high order bits, so the correctness of the experiments is

still maintained. Also notice that between bit 10 and bit 63, there are two spikes. We

are performing addition on two uniformly distributed operands. Their sum, however, is

not uniformly distributed in the arithmetic space. The sum has higher density in high

magnitude area (close to positive and negative infinity), which is indicated by the spikes

(larger percentage of ’1’s).

Then if we compare Figure 5.4 and Figure 5.5, we can find that they look similar

except that the spikes become valleys. This is reasonable. If the correct results are biased

(have different probability of ’0’s and ’1’s), then it is more likely for a bit to miss timing

and have correct result accidentally. The more it is biased, the less is the error rate. The

dive at bit 52 is caused by different subcomponents. FPU ADD use two subcomponents

to compute the exponent and mantissa separately. They have different timing slacks and

exhibit different error rates.

The results of EXU ALU have quite low error rate. The reason is the same as we

explained before.

FPU MUL also has a transition at bit 52, and it is caused by different timing slack in

subcomponents as well.

5.1.3. Operand-related Error Rate

Next, we show operand-related error rate of FPU ADD in Figure 5.12 to Figure 5.22.

The error rate is given in a 3D space, in which the X axis and Y axis are the exponent of

two operands, and Z axis is the number of flipped bits in corresponding output. We have

color-coded each dot to make them more identifiable in 3D space.
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Figure 5.12. Operand-related error rate of FPU ADD at voltage 1.1V

Figure 5.13. Operand-related error rate of FPU ADD at voltage 1.0V
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Figure 5.14. Operand-related error rate of FPU ADD at voltage 0.9V

Figure 5.15. Operand-related error rate of FPU ADD at voltage 0.8V
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Figure 5.16. Operand-related error rate of FPU ADD at voltage 0.7V

Figure 5.17. Operand-related error rate of FPU ADD at voltage 0.6V
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Figure 5.18. Operand-related error rate of FPU ADD at voltage 0.5V

Figure 5.19. Operand-related error rate of FPU ADD at voltage 0.4V
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Figure 5.20. Operand-related error rate of FPU ADD at voltage 0.3V

Figure 5.21. Operand-related error rate of FPU ADD at voltage 0.2V
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Figure 5.22. Operand-related error rate of FPU ADD at voltage 0.1V

Let’s look at voltage level 1.1V first. We can see most of the dots are lying on the

ground. These are the correct results. There are two layers above. On the top layer, there

is a gap along the diagonal. It indicates an opportunity for tolerating low voltages, when

two operands have similar magnitude. This is in accordance with our understanding.

When performing floating-point addition, it is necessary to align the magnitude of two

operands, so they can be added correctly. If two operands are close in magnitude, it may

take less time and the timing slack will be larger.

This gap also exists in voltage level of 1.0V to 0.7V. However, starting from 0.8V to

lower voltages, the number of erroneous bits is generally high, we may not want to operate

at these voltage levels. When voltage is below 0.6V, the number of wrong bits rises to

approximately 30, which is consistent with 50% error rate we saw before.
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Next we show the operand-related error rate of EXU ALU in Figure 5.23 to Fig-

ure 5.33(the two axes are the two operands in linear space). We can see that, from

voltage level 1.1V to 0.5V the results are the same. There is no any error until voltage

level 0.4V, which is in accordance with the overall error rate presented before. At 0.4V,

some minor timing errors start to appear, but most of the results are still correct. At

0.3V, more bits are erroneous, and at 0.2V and 0.1V, about half of the bits are flipped.

Again, this indicates that lowering the supply voltage of EXU ALU to 50% is safe for all

input vectors we have tested.

Figure 5.23. Operand-related error rate of EXU ALU at voltage 1.1V
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Figure 5.24. Operand-related error rate of EXU ALU at voltage 1.0V

Figure 5.25. Operand-related error rate of EXU ALU at voltage 0.9V
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Figure 5.26. Operand-related error rate of EXU ALU at voltage 0.8V

Figure 5.27. Operand-related error rate of EXU ALU at voltage 0.7V
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Figure 5.28. Operand-related error rate of EXU ALU at voltage 0.6V

Figure 5.29. Operand-related error rate of EXU ALU at voltage 0.5V
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Figure 5.30. Operand-related error rate of EXU ALU at voltage 0.4V

Figure 5.31. Operand-related error rate of EXU ALU at voltage 0.3V
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Figure 5.32. Operand-related error rate of EXU ALU at voltage 0.2V

Figure 5.33. Operand-related error rate of EXU ALU at voltage 0.1V
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We show the operand-related error rate of FPU MUL in Figure 5.34 to Figure 5.44.

Since the input vectors we use to test FPU MUL are much fewer than the ones used to

test the other two execution units, we see the dots are sparse in the 3D space. It is difficult

to draw reliable conclusion from these graphs, but we can validate that the number of

erroneous bits increases with the decreasing of voltages. Notice that at voltage levels

0.4V and below, we can see some results have no erroneous bit, even thought the supply

voltage is already smaller than the threshold voltage. This is not because that the circuit

can still function. On the contrary, the circuit ceases to switch and the output stays at

0. If the correct result happens to be 0, we will observe a correct output.

Figure 5.34. Operand-related error rate of FPU MUL at voltage 1.1V
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Figure 5.35. Operand-related error rate of FPU MUL at voltage 1.0V

Figure 5.36. Operand-related error rate of FPU MUL at voltage 0.9V
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Figure 5.37. Operand-related error rate of FPU MUL at voltage 0.8V

Figure 5.38. Operand-related error rate of FPU MUL at voltage 0.7V
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Figure 5.39. Operand-related error rate of FPU MUL at voltage 0.6V

Figure 5.40. Operand-related error rate of FPU MUL at voltage 0.5V
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Figure 5.41. Operand-related error rate of FPU MUL at voltage 0.4V

Figure 5.42. Operand-related error rate of FPU MUL at voltage 0.3V
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Figure 5.43. Operand-related error rate of FPU MUL at voltage 0.2V

Figure 5.44. Operand-related error rate of FPU MUL at voltage 0.1V
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5.1.4. Relative Error

We define the fourth metric Relative error as:

(5.1) Relative error =

∣

∣

∣

∣

observed value − correct value

correct value

∣

∣

∣

∣

It shows how much the observed value is diverted from correct one. This indicates

the actual impact on software. The results of FPU ADD are shown in Figure 5.45 to

Figure 5.51. From Figure 5.45 to Figure 5.49 show the relative error is in linear space,

for voltage level between 1.1V and 0.7V. The relative error increases very quickly below

voltage of 0.7V, so in Figure 5.50 to Figure 5.51 it is shown in logarithmic space, for

voltage level 0.6V and 0.5V. Below 0.5V, the observed value is always Inf , and we omit

figures for these voltage levels.

Figure 5.45. Relative error of FPU ADD at voltage 1.1V in linear space
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Figure 5.46. Relative error of FPU ADD at voltage 1.0V in linear space

Figure 5.47. Relative error of FPU ADD at voltage 0.9V in linear space
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Figure 5.48. Relative error of FPU ADD at voltage 0.8V in linear space

Figure 5.49. Relative error of FPU ADD at voltage 0.7V in linear space
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Figure 5.50. Relative error of FPU ADD at voltage 0.6V in logarithmic space

Figure 5.51. Relative error of FPU ADD at voltage 0.5V in logarithmic space



71

The results show that voltage 0.7V is an important threshold. Voltage levels above

it will have relative errors smaller than 1. However, when voltage goes below it, we will

soon have massive errors of a magnitude which can only be measured in logarithmic space.

Such massive error will surely bring down the output quality.

We show the relative error of EXU ALU in Figure 5.52 to Figure 5.62. For voltage

levels 0.5V and above, the result is always correct. At voltage levels 0.4V and below,

there are some timing errors. The maximum of them can be as large as 1014. However,

such massive error is very rare, and most of the results are still correct or only have minor

deviation.

Figure 5.52. Relative error of EXU ALU at voltage 1.1V in linear space
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Figure 5.53. Relative error of EXU ALU at voltage 1.0V in linear space

Figure 5.54. Relative error of EXU ALU at voltage 0.9V in linear space
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Figure 5.55. Relative error of EXU ALU at voltage 0.8V in linear space

Figure 5.56. Relative error of EXU ALU at voltage 0.7V in linear space
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Figure 5.57. Relative error of EXU ALU at voltage 0.6V in linear space

Figure 5.58. Relative error of EXU ALU at voltage 0.5V in linear space
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Figure 5.59. Relative error of EXU ALU at voltage 0.4V in linear space

Figure 5.60. Relative error of EXU ALU at voltage 0.3V in linear space
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Figure 5.61. Relative error of EXU ALU at voltage 0.2V in linear space

Figure 5.62. Relative error of EXU ALU at voltage 0.1V in linear space
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Then we show the relative error of FPU MUL in Figure 5.63 to Figure 5.73. Notice

that in voltage levels 1.1V to 0.9V, the relative error is shown in linear space. From 0.8V,

the relative error becomes huge, and we use log10(relative error) to show them. However,

for voltage 0.4V and below, the relative error is shown in linear space again, and it is

always 1. It is because the output we get in these operating conditions is always 0, and

it makes the relative error always 1.

Figure 5.63. Relative error of FPU MUL at voltage 1.1V in linear space
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Figure 5.64. Relative error of FPU MUL at voltage 1.0V in linear space

Figure 5.65. Relative error of FPU MUL at voltage 0.9V in linear space
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Figure 5.66. Relative error of FPU MUL at voltage 0.8V in logarithmic space

Figure 5.67. Relative error of FPU MUL at voltage 0.7V in logarithmic space
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Figure 5.68. Relative error of FPU MUL at voltage 0.6V in logarithmic space

Figure 5.69. Relative error of FPU MUL at voltage 0.5V in logarithmic space
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Figure 5.70. Relative error of FPU MUL at voltage 0.4V in linear space

Figure 5.71. Relative error of FPU MUL at voltage 0.3V in linear space
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Figure 5.72. Relative error of FPU MUL at voltage 0.2V in linear space

Figure 5.73. Relative error of FPU MUL at voltage 0.1V in linear space
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5.2. Error Tolerance of JPEG

PSNR of JPEG decompression with injected errors is shown in Figure 5.74 [33]. The

results are given in lines regarding the bit positions of error injection.

Figure 5.74. PSNR of error injected JPEG decompression

Generally speaking, the results show little resilience to errors. Even at error rate of

0.1, PSNR degrades drastically and the picture is blurring. As shown by the dot lines at

0.1 error rate, PSNR decreases by at least 33%.

Comparing the four lines, we can see that errors injected at lower bits have smaller

impacts on the output quality. This implies that, if we treat the bits differently, specifically



84

by supplying high order bits with higher voltage, the impact on the output quality will

be more limited. This is a accuracy-power trade-off at smaller granularity.

We have omit the result for error rate above 50% to make the graph clearer. Error rate

larger than 50% will produce images with similar quality. There will be a little increase

when error rate approaches 100%. In this case, all bits are flipped and it gives better

quality than randomly flip some bits, but this does not make the picture usable.
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CHAPTER 6

Discussion

The results in the previous chapter shows pessimistic vision for error resilience. For

JPEG decompression, any error rate above 0.1% will make objects in the image be-

come hard to recognize. However, we also notice that for some particular execution unit

(EXU ALU), there exists great tolerance for low supply voltage. We can safely decrease

the voltage to 50% without encountering any timing errors. This will bring us 75% saving

of dynamic power and 50% saving of static power in the EXU ALU. Only at voltage level

of 0.2V and 0.1V, the quality degradation will become a serious problem for the user, as

indicated by the two vertical lines in Figure 6.1.

Since JPEG decompression only involves integer operations, EXU ALU accounts for a

great percentage in overall dynamic power consumption, and it means significant processor

power saving for this application as well. Our study is limited to only one multimedia

application by now. We have reason to believe that with more extensive study, other

applications that are more resilient will be identified.

The future work of this project involves three aspects.

First, we will optimize the simulation flow and continue to characterize other execution

units. The problem with mixed-signal simulation is its performance. Every time a gate

is simulated in analog, the information will be passed to circuit level digital simulator

but never recorded. Next time the gate is invoked, it has to be simulated again, even

though the same simulation had just been done and the information had been obtained.
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Considering there are many gates of the same type in one unit, and these gates might

switch frequently, this is a huge waste of simulation time. For example, when we simulate

FPU ADD with 10,000 test vectors, each job takes 4 to 5 days to finish. Since we have

10 permutations for each voltage level, and we sweep through 12 voltage levels, the whole

simulation time is more than 2 weeks. To solve this problem, we are trying to develop

other simulation methods. The new method will be done in two phases. In phase one, we

will run some SPICE-like simulations with certain operating conditions we give as input,

and the simulations will create a new library with low voltage characteristics. In phase

two, the circuit simulator will refer to the library for all necessary information and run

as a pure digital simulator. The analog simulation is done for each gate only once, no

Figure 6.1. PSNR of error injected JPEG decompression
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matter how many input vectors we have or how complex the circuit is. This will greatly

improve the simulation performance.

Second, we will develop programming language constructs that denote the reliability

guarantees required by different sections of the code or data. These constructs specify

which variables and code segments are allowable to hardware errors, and their tolerance

margins. In turn, the compiler maps these constructs to specialized instructions that

direct the core to steer the computation to a functional and storage unit with a specific

reliability level, by changing its operating voltage. These reliability constraints could be

estimated manually by the user through experimentation or other methods, or automat-

ically by modified quality-of-service profiler tools.

Third, on the hardware end, to meet the required fidelity constraints set by the soft-

ware layer, dynamically scale voltage to minimize the power consumption at a given re-

liability level, based on experimental models of hardware behavior at each voltage. With

execution units characterization and the proper hardware design, the system as a whole

can guarantee the reliability levels required by the software.
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CHAPTER 7

Conclusion

Using mixed-signal simulations at netlist level, we have characterized below-nominal

supply voltage behaviours of three execution units. We calculate the error rate of their

execution output to indicate the tolerance to low supply voltage. The results are distinct

for these three execution units. For floating-point units, timing errors appear right after

the supply voltage is lowered, while for integer addition and logical operations, the unit

continues to operated correctly until the supply voltage is close to the threshold voltage

of the MOS gates. With this characterization, we can tune the supply voltage specif-

ically to each execution unit, according to the power and fidelity requirements. Thus,

by striking a balance between computational accuracy and supply voltage, and through

software/hardware cooperation, we anticipate Elastic Fidelity will successfully tackle the

ongoing power crisis in processor design.
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