

Electrical Engineering & Computer Science Department

Technical Report
NWU-EECS-11-02
February 2, 2011

Elastic Fidelity: Trading-off Computational Accuracy for Energy

Reduction

Sourya Roy†, Tyler Clemons‡, S M Faisal‡, Ke Liu†, Nikos Hardavellas†, Srinivasan Parthasarathy‡

†
Department of Electrical Engineering & Computer Science, Northwestern University

‡
Department of Computer Science & Engineering, Ohio State University

ABSTRACT

Power dissipation and energy consumption have become one of the most important problems in the design of
processors today. This is especially true in power-constrained environments, such as embedded and mobile
computing. While lowering the operational voltage can reduce power consumption, there are limits imposed at
design time, beyond which hardware components experience faulty operation. Moreover, the decrease in feature size
has led to higher susceptibility to process variations, leading to reliability issues and lowering yield. However, not all
computations and all data in a workload need to maintain 100% fidelity. In this paper, we explore the idea of
employing functional or storage units that let go the conservative guardbands imposed on the design to guarantee
reliable execution. Rather, these units exhibit Elastic Fidelity, by judiciously lowering the voltage to trade-off reliable
execution for power consumption based on the error guarantees required by the executing code. By estimating the
accuracy required by each computational segment of a workload, and steering each computation to different
functional and storage units, Elastic Fidelity Computing obtains power and energy savings while reaching the
reliability targets required by each computational segment. Our preliminary results indicate that even with
conservative estimates, Elastic Fidelity can reduce the power and energy consumption of a processor by 11-13%
when executing applications involving human perception that are typically included in modern mobile platforms,
such as audio, image, and video decoding.

Keywords Energy efficiency, hardware reliability, error tolerance, elastic fidelity

First Workshop on Architecture and Systems Support for Mobile Applications, co-located with ASPLOS 2011

Elastic Fidelity: Trading-off Computational Accuracy for Energy
Reduction

Sourya Roy†, Tyler Clemons‡, S M Faisal‡, Ke Liu†, Nikos Hardavellas†, Srinivasan Parthasarathy‡
†Department of Electrical Engineering & Computer Science

Northwestern University
{souryaroy, nikos}@northwestern.edu, KeLiu2015@u.northwestern.edu

‡Department of Computer Science & Engineering
Ohio State University

{clemonst, faisal, srini}@cse.ohio-state.edu

Abstract
Power dissipation and energy consumption have become one of the
most important problems in the design of processors today. This is
especially true in power-constrained environments, such as embedded
and mobile computing. While lowering the operational voltage can
reduce power consumption, there are limits imposed at design time,
beyond which hardware components experience faulty operation.
Moreover, the decrease in feature size has led to higher susceptibility
to process variations, leading to reliability issues and lowering yield.
However, not all computations and all data in a workload need to
maintain 100% fidelity. In this paper, we explore the idea of
employing functional or storage units that let go the conservative
guardbands imposed on the design to guarantee reliable execution.
Rather, these units exhibit Elastic Fidelity, by judiciously lowering
the voltage to trade-off reliable execution for power consumption
based on the error guarantees required by the executing code. By
estimating the accuracy required by each computational segment of a
workload, and steering each computation to different functional and
storage units, Elastic Fidelity Computing obtains power and energy
savings while reaching the reliability targets required by each
computational segment. Our preliminary results indicate that even
with conservative estimates, Elastic Fidelity can reduce the power
and energy consumption of a processor by 11-13% when executing
applications involving human perception that are typically included
in modern mobile platforms, such as audio, image, and video
decoding.

Keywords Energy efficiency, hardware reliability, error tolerance,
elastic fidelity

1. Introduction
Continued technology scaling in IC design has made power
dissipation a major constraint in the design of processors today.
Although feature sizes are still scaling, voltage scaling has nearly
stopped due to high leakage currents associated with low threshold
voltages. This has lead to a dramatic increase in power density with
decreasing feature size [15]. On the other hand, the scaling of the
feature sizes has made chips more susceptible to problems of
variability and hardware faults. These faults originate from process
variations, soft errors and wear outs, hampering reliable execution [1,
17].

Traditionally, the operating points of processors have been
determined by conservative guardbands based on worst-case
scenarios. A guarband refers to the timing differential inserted into
the hardware design to allow for signals to communicate without
being perfectly aligned. However, this design approach results in

significant overheads in both power and performance [22]. This leads
to an interesting question: What if we let go of these guardbands and
allow components of the processor to fail sometimes with the errors
accommodated at the architectural and software levels? By following
laws of transistor physics, keeping all else constant, decreasing the
operating voltage (Vdd) would reduce power consumption at a
quadratic rate, at the expense of some timing errors.

Prior research has shown that in every large CMOS chip, there
exist two voltage operating points – the rated voltage point and the
critical voltage point [19, 26]. This leads to three operating regions
for the processor. First, when the supply voltage is at or above the
rated voltage, the processor runs at full accuracy without any errors.
Second, when the processor operates at a supply voltage between the
rated and critical voltage points, small-scale errors emerge due to
timing violations in worst-case situations. And last, operating at a
voltage beyond this critical point leads to massive errors.

In this paper, we propose the idea of operating processor
components (e.g., functional units) at the region of supply voltage
between the rated and critical operating points, to attain significant
reductions in power while meeting the reliability requirements
requested by each section of the executing application. The errors
originating due to this are accommodated at the software layer by
exploiting the fact that different sections of the code require variable
reliability guarantees to present acceptable results to the user. We
envision that programming language constructs can denote the
reliability guarantees required by different sections of the code; these
requirements are communicated to the hardware during execution,
which steers the computation to corresponding functional and storage
units operating at the lowest voltage that meets the required reliability
constraints. By not treating all code and all data the same from the
viewpoint of reliability requirements, Elastic Fidelity Computing
exploits sections of the computation that are error-tolerant to lower
power and energy consumption, without negatively impacting
executions that require full reliability.

To explore the feasibility of this idea, we examine the error
tolerance of a range of applications involving human perception in
the realms of audio, image and video decompression in the presence
of computation errors in the ALUs. We demonstrate that:

1. Different portions of an application’s dataset exhibit variable
error tolerance. For example, errors occurring in the low-
significance bits have a lesser effect in the application behavior
than those occurring in higher-significance bits.

2. Different portions of an application’s code exhibit variable error
tolerance. There are some functions that show negligible effects,
while others result in a program crash even if the least
significant bit is flipped.

3

3. Our preliminary results on stock kernels (without any
modifications) indicate that Elastic Fidelity Computing reduces
the processor power and energy by 11-13% for our applications,
even if we allow only the ALUs to exhibit Elastic Fidelity. We
anticipate that expanding this idea to more execution and storage
components of a processor would result in much higher power
savings.

The remainder of the paper is organized as follows. Section II
discusses the underlying idea of error tolerance and Elastic Fidelity
Computing. Section III describes our experimental methodology
while Section IV reports the results and analyses of our study.
Finally, Section V presents related work and section VI concludes the
paper.

2. Elastic Fidelity and Software Behavior
Traditionally, program execution is said to be correct if and only if
the underlying computations are perfect. However, a program may
still appear to execute correctly if it returns acceptable results from
the user’s perspective, even if there is some noise in the data or
inaccuracies in the computation [23].

Prior work such as that in [23] shows that the level of error
tolerance is application-dependent and depends on how accurate a
program’s output needs to be. There are applications which are highly
resilient inherently and there are others which are very little.
Important examples of highly-resilient applications come from the
class of soft computing. Unlike hard or exact computing, soft
computing takes advantage of the tolerance of imprecision,
uncertainty and approximation for a given problem – resulting in
acceptable rather than exact results [36, 37]. Multimedia applications
offer a very interesting example of soft computing. These
applications primarily depend on human perception and allow
considerable leeway in terms of accuracy. Moreover, such
applications are typically included in modern mobile platforms and
are heavily exercised by users. Similarly, there are applications that
already assume unreliable substrates and already have error-
correcting capabilities (e.g., networking applications [24]). Other
examples include Artificial Intelligence applications on forecasting,
inference and data mining, scientific computing (e.g., simulations of
oceanic currents, weather forecasting), or computations on already
noisy data (e.g., sensor readings). Such workloads tend to perform
computations on approximations, and through multiple iterations
narrow down to a set of results that are within a qualitative threshold
according to the user requirements. On the other hand, other
applications rely on exact numerical results and are generally
intolerant of errors. Examples include memory management in the
operating system, code compilation and lossless data compression.

Looking further into error-resilient applications, we envisage that
different portions of the execution offer different error tolerance. For
example, pointer operations and control logic such as conditional and
branch statements are highly sensitive to errors. A corrupt pointer
would usually lead to a segmentation fault while a corrupt control
would notably disorder the program execution. On the other hand,
operations involving standard arithmetic computations such as matrix
processing and decoding are generally error-tolerant and have a
relatively benign effect on the final result of the program.

In view of these observations, we propose the idea of exploiting
the elastic fidelity of computations by varying the reliability of the
underlying hardware according to the application needs at each point
in time. Portions of the application that are error-sensitive are
executed at full reliability, while the ones that are error-tolerant are
run on variable accuracy to produce an acceptable result to the end

user. As discussed in the previous section, the reliability of the
underlying hardware can be varied by running it on a region between
the rated and critical voltage points, resulting in power savings. This
scheme can be implemented at the granularity of a core, in both
single and multi-core systems. In the former case, the operation of the
core can be dynamically changed between full (100%) and variable
accuracy, according to the requirements of the executing code
segment. In the latter case, certain cores run on full accuracy to
accommodate the error-sensitive operations, while others run on
variable accuracy to compute error-tolerant operations. Techniques
like staged execution [13] and computation spreading [4] can
facilitate execution migration between the various cores. Similarly,
Elastic Fidelity can be implemented at a finer granularity by varying
the fidelity guarantees of individual functional units or storage
elements within a single core. Fig 1 illustrates such an example with
ALUs.

From the viewpoint of software design, Elastic Fidelity can be
implemented through programming constructs. A programmer
specifies which variables and code segments are allowable to
hardware errors and their tolerance margins. In turn, the compiler
maps these constructs to specialized instructions that direct the core
to steer the computation to a functional unit with a specific reliability
level, by changing its operating voltage. On the hardware end,
dynamic voltage scaling and calibration circuitry minimize the power
consumption at a given reliability level, based on experimental
models of hardware behavior at each voltage level. The fidelity
requirements of each code/data segment can be estimated using
feedback optimization tools.

There have been emerging hardware designs that allow operation
in less-than-perfect reliability levels. These are discussed in Related
Work (Section V). However, to the best of our knowledge, there is a
lack of research in understanding how errors in different code/data
segments under these reduced reliability conditions impact the overall
accuracy of the end result. In this paper we explore the idea of
exposing the elastic fidelity requirements of software components to
the hardware layer, in order to reduce power and conserve energy
while maintaining accuracy guarantees.

Figure 1. Implementing elastic fidelity using (a) a single ALU,
and (b) multiple ALUs

ERROR-SENSITIVE
CODE

 ERROR-TOLERANT
CODE

SWITCH TO
VARIABLE
ACCURACY

ALU

(a)

(b)

ERROR-SENSITIVE
CODE

ERROR-
TOLERANT
CODE

10
0%

-A
C

C
U

R
A

T
E

A

LU
s

V
A

R
IA

B
L

E
-

A
C

C
U

R
A

C
Y

 A
LU

s

4

3. Experimental Methodology
We run multimedia kernels from the MediaBench I and II
benchmarking suites [6, 10] on an x86 multicore server, and simulate
elastic-fidelity ALUs by injecting errors in the computations at run
time through software wrappers. Table 1 lists the applications we use
in our experiments. G.721-D performs audio decompression of the
G.721 ADPCM speech codec, JPEG-D decompresses a JPEG picture,
and H.263-D decompresses compressed video [6]. To judge the
quality of the computation, we use segmented signal to noise ratio
(SNRseg) for G.721 and peak signal to noise ratio (PSNR) for JPEG
and H.263 [27, 35].

Table 1. Application Kernels & Quality Metrics

Kernel Application Quality Metric

G.721-D
Audio
decompression

Segmented Signal to Noise Ratio
(SNRseg)

JPEG-D
Image
decompression Peak Signal to Noise Ratio (PSNR)

H.263-D
Video
decompression Peak Signal to Noise Ratio (PSNR)

For these applications, we take a raw sample, and run it through

the respective encoder to get a compressed file. This compressed file
is then decoded using the error-injected kernel to get its
decompressed equivalent. This file is compared with the original
sample to obtain the quality metric.

3.1 Error Injection

We model hardware errors pertaining only to the ALU on a 32-bit
data width. This is implemented by injecting errors on the application
at run time through software implemented fault injection (SWIFI)
using software wrappers [18, 34]. These software wrappers model
hardware errors by flipping bits on the 32-bit bus at a given
probability (error rate). However, as discussed in Section II, we
exclude pointer and branch operations from injecting errors to ensure
program stability.

The use of software wrappers allows flexibility in inserting
errors in selective locations and helps us to study the behavior of the
application not only when errors are injected in the entire
computation, but also when they are injected during the execution of
specific functions. To gain finer granularity, we vary the bit positions
we flip. For example, an application might behave completely
differently when errors occur in the 16 most significant bits (MSBs)
than when they occur in the 16 least significant bits (LSB) on the
ALU. These observations are discussed further in Section IV. For
every condition, we run our experiments 1000 times to get
statistically significant results.

3.2 Metrics for Analysis and Quality Comparisons

To analyze the behavior of the applications, we perform our
experiments first by modifying the range of bits to be subjected to
error, and then by varying the error probability (error rate).

1) Bits Subjected to Error: Starting from the least significant bit,
we systematically increase the range of error injection towards the
most significant bit, covering the entire 32-bit data width of the ALU.
The error probability is kept at 4%. This gives a comprehensive view
of the susceptibility of the application to the location of the errors in
the bus. In most cases, errors in the least significant bits affect the
operation of the program less significantly than those in the most
significant bits. In addition, as the scope of error in the bus increases,

the error in the computation might go beyond the tolerance of the
application, leading it to terminate abruptly. To capture this behavior,
we obtain two metrics – number of successful runs, and output
quality (SNRseg for the audio, and PSNR for the image and video
decoding applications).

2) Error Rate: By analyzing the error susceptibility of the
application from the prior metrics, we select an optimal range of the
bits to allow errors on. This is done to ensure that the program
completes successfully at each run. In this case, the error rate is
varied to obtain the quality of the output (SNRseg or PSNR). This
illustrates the behavior of the application with increasing hardware
error rates. The metrics are obtained for errors injected not only in the
entire application but also in individual functions to determine their
tolerances.

4. Results & Analysis

4.1 The Impact of Bit Selection on Successful Runs

Fig 2 (a), (d), and (g) plots the number of successful runs (normalized
to the error-free execution) for the test kernels. The graphs show the
behavior of the entire application as well as when injecting errors
only within major functions. In the case of G.721-D, every function
runs successfully, even in the presence of errors. However, this is not
the case for JPEG-D and H.263-D. For JPEG-D, the upsampling
function crashes when the 10th least significant bit in the data bus is
introduced to error; entropy decoding crashes when errors are
injected at the 19th least significant bit. Similarly, for H.263-D, the
motion compensation block is highly sensitive to errors and crashes
even when errors are injected in the 2nd least significant bit. The
Huffman decoding and reconstruction functions follow soon,
crashing at the 12th and the 14th LSB respectively, while inverse DCT
is error-resilient and causes crashes only after the 29th bit is flipped.

4.2 The Impact of Bit Selection on Output Quality

Fig 2 (b), (e), and (h) plots the decoding quality (SNRseg or PSNR)
for the entire application and respective functions. In the case of
JPEG-D and H.263-D, we see an anticipated behavior of decrease in
the output quality as the higher significant bits are subjected to error.
G.721-D shows a peculiar behavior in the fact that the SNRseg
decreases up to bit 16 and then starts rising. This anomaly is due to
the fact that most of the computations are performed with short int
(16 bits) data type. As we increase the scope of error beyond the
16bits, the individual probability of bitflips for the first 16 bits
decreases, thus reducing the effect on the computations.

From the results discussed above, we select the range of 8 least
significant bits (bit positions 0-7) to be subjected to error for our
preliminary analysis of the application behavior with respect to
increasing error rates. This is done for two reasons – first errors in the
first 8 bits do not affect the output quality significantly and keep it at
acceptable levels (> 10dB SNRseg for G.721, > 25dB PSNR for
JPEG, and > 30dB PSNR for H.263). Second, the programs run
stably without crashing with errors in this region.

Additionally, we observe that entropy decoding in JPEG-D and
motion compensation in H.263-D reduce the output quality
drastically when injected with errors. Thus, we choose to provide full
accuracy to these functions to get a meaningful output. While
graphing the behavior of the entire application (curve marked “All”),
we exclude error injection in entropy decoding and motion
compensation while the remaining application is subjected to the
same error rate.

5

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

0

0.2

0.4

0.6

0.8

1

0 8 16 24 32

N
O

RM
AL

IZ
ED

 S
U

CC
ES

SF
U

L
RU

N
S

BITS SUBJECTED TO ERROR

-10

0

10

20

30

0 8 16 24 32

SE
G

M
EN

TE
D

 S
N

R
(d

B)

BITS SUBJECTED TO ERROR

5

10

15

20

25

30

0 5 10

SE
G

M
EN

TE
D

 S
N

R
(d

B)

ERROR RATE (%)

All

Quantize

Reconstruct

Step Size

Predictors

0 8 16 24 32

0

0.2

0.4

0.6

0.8

1

BITS SUBJECTED TO ERROR

N
O

RM
AL

IZ
ED

 S
U

CC
ES

SF
U

L
RU

N
S

0 8 16 24 32

0
10
20
30
40
50
60

BITS SUBJECTED TO ERROR

PE
AK

 S
N

R
(d

B)

0
10
20
30
40
50
60

0 5 10

PE
AK

 S
N

R
(d

B)

ERROR RATE (%)

All (w/o
Entropy)

Upsampling

Entropy
Decoding

Quantization

0 8 16 24 32

0

0.2

0.4

0.6

0.8

1

BITS SUBJECTED TO ERROR

N
O

RM
AL

IZ
ED

 S
U

CC
ES

SF
U

L
RU

N
S

0 8 16 24 32

0

10

20

30

40

50

BITS SUBJECTED TO ERROR

PE
AK

 S
N

R
(d

B)

0

10

20

30

40

50

0 5 10

PE
AK

 S
N

R
(d

B)

ERROR RATE (%)

All (w/o Pic
Decode)

Inverse DCT

Huffman Dec /
Inv Quant

Motion Comp /
Pic Decode

Reconstruction

Figure 2. (a,d,g) Successful runs vs. bits injected with errors; (b,e,h) Output quality vs. bits injected with errors; (c,f,i) Output quality vs. error rate for
G.721 (a,b,c), JPEG (d,e,f) and H.263(g,h,i)

H.263

JPEG

G.721

4.3 The Impact of Error Rate on Output Quality

Fig 2 (c), (f), and (i) plots the decoding output quality for each
application with increasing error rate. In the case of G.721-D, the
quantization, step size and predictor functions are more error-tolerant
than the reconstruction function. For JPEG-D, upsampling and
quantization show similar tolerance with entropy decoding having the
lowest. Finally in the case of H.263-D, inverse DCT is not affected
by errors in the range of bit positions we consider, while motion
compensation is highly sensitive.

4.4 Power Savings

As seen from the graphs in Fig 2 (c), (f), and (i), the maximum error
rate for acceptable output quality is 7% for G.721-D (SNRreg >
10dB), 4% for JPEG-D (PSNR > 25dB) and 6% for H.263-D (PSNR
> 30dB). This is for the case when the entire application is subjected
to a uniform error rate. However, by adding variable fidelity levels to
the different function routines, Elastic Fidelity Computing can
withstand even lower accuracies (higher error rate) for the same
output quality level. After determining the corresponding error levels
for each major segment of each application, we estimate the power
consumption by equating the percentage of dynamic instructions
subjected to error [11] with the hardware error-power model
presented in [19]. The power consumption is normalized to the power
of the processor in error-free operation.

Table 2. Estimation of Power Consumption

Application
@ error rate per function

Instructions
subjected to
error

Normalized
processor power
consumption

G.721 audio decoding
Quantization @10%, 0-15 bits;
Step Size @10%, 0-7 bits;
Predictors @10%, 0-7 bits;
all else @4%, 0-7 bits

80.7% 0.89

JPEG image decoding
Entropy @0%;
Quantization @6%, 0-7 bits;
Upsampling @5%, 0-7 bits;
all else @4%; 0-7 bits

70.5% 0.88

H.263 video decoding
Motion compensation @0%;
IDCT @10%, 0-28 bits;
all else @6%; 0-7 bits)

64.2% 0.87

From Table 2, it is evident that even without any modification to

the program, and even when allowing only the ALUs to exhibit
variable fidelity, Elastic Fidelity Computing lowers the power
consumption of the processor by 11-13%. Because the execution time
does not change for these applications when errors are injected in the
corresponding functions, the power savings also correspond to energy
savings. As our results are highly conservative, we envisage the

6

power savings to be significantly higher once the application is
written in a fidelity-aware approach with the necessary program
constructs, and when more functional and storage units employ
elastic fidelity (rather than only ALUs).

5. Related Work
There has been in depth research in modeling the behavior of
hardware due to voltage scaling and process variability [7, 9, 28],
along with techniques to prevent them [2, 5, 30]. New designs based
on better-than-worst-case (BWTC) scenarios have been developed,
which relax the design guardbands and perform error recovery when
required. Designs such as Razor [8] perform error correction at the
hardware through the use of additional circuitry, while [14] corrects
the errors at the algorithmic level. The benefits of these techniques in
the scope of power reduction are limited due to their error recovery
overheads. Moreover, they are orthogonal to Elastic Fidelity and can
be used synergistically with it to lower the power and energy
consumption even further. In addition, there has been recent work in
optimizing the most frequently exercised paths in hardware at the
cost of timing errors in the infrequent ones [29]. Techniques like
BlueShift [12] work on this principle and optimize the circuit for
maximum operating frequency for a given error rate. However, these
developments focus on error correction rather than error tolerance
and none of them look into the idea of allowing the errors to
propagate into the software.

The most significant work related to Elastic Fidelity appears in a
related project [19, 20, 21] which targets processor designs that keep
voltage-reliability trade-offs in mind. This study minimizes processor
power for a given error rate. This differs from our work, as it deals
with designing the underlying hardware, while we focus on the
feasibility of software to take advantage of this phenomenon.

On the software side, a considerable amount of research has been
performed on the effect of single event upsets on software behavior
[3, 16, 23, 25, 31] due to the rising reliability issues resulting from
decreasing feature size. However, we find that not much has been
done in the case of continued errors as presented in this paper. Unlike
single event upsets, these errors occur continuously due to faulty
hardware (as a result of voltage over-scaling in this case.)

Finally, research on empathic systems [32, 33] considers human
perception and user satisfaction to guide power optimizations.
Contrary to our work, empathic systems do not trade-off accuracy for
power; rather, they trade-off user satisfaction for power. However,
similarly to empathic systems, our output quality metrics for the
applications we study in this paper are also exploiting human
perception to arrive at a result that is good enough, but not
necessarily “perfect”.

6. Conclusion
We observe that not all computations and data in a workload need to
maintain 100% fidelity. Our results indicate that some functions in an
application are far more error resilient than others. Similarly, errors in
certain portions of an application’s dataset may cause virtually no
change in its operation, while errors in other portions may affect the
final outcome significantly (e.g., errors in LSB vs. MSB bits
respectively). Elastic Fidelity Computing exploits the variable
accuracy requirements within an application to vary the reliability of
the underlying hardware according to the application needs at each
point in time. Portions of the application that are error-sensitive
execute at full reliability, while the ones that are error-tolerant run on
variable accuracy to produce an acceptable result to the end user. In
turn, the hardware can let go the conservative guardbands imposed on
the design to guarantee reliable execution. Instead, hardware may

operate at voltage levels low enough to induce errors, but high
enough to maintain reasonable output quality.

Our results indicate that Elastic Fidelity Computing can lower the
power and energy consumption of workloads pertaining to human
perception by 11-13%, while keeping their output quality within
acceptable levels. Our results are very conservative, as we assume no
modifications to the software, and we assume that only ALUs employ
elastic fidelity. We anticipate that by incorporating error-aware
design in software, and by extending elastic fidelity operation to more
hardware components in a system, the power and energy savings
would be significantly higher. Thus, by striking a balance between
computational accuracy and supply voltage, and through
software/hardware cooperation, Elastic Fidelity Computing shows
promise in successfully tackling the ongoing power crisis in
processor design.

References
[1] S. Borkar, “Tackling variability and reliability challenges,” Design &

Test of Computers, IEEE, vol. 23, no. 6, pages. 520-520, 2006.
[2] T. D. Burd and R. W. Brodersen. Design issues for Dynamic Voltage

Scaling. In Proceedings of the 2000 International Symposium on Low
Power Electronics and Design.(ISLPED '00),. pages. 9-14, 2000.

[3] J. Carreira, H. Madeira, and J. G. Silva, “Xception: a technique for the
experimental evaluation of dependability in modern computers,” IEEE
Transactions on Software Engineering, vol. 24, no. 2, pages. 125-136,
1998.

[4] K. Chakraborty, P. M. Wells, and G. S. Sohi. Computation spreading:
employing hardware migration to specialize CMP cores on-the-fly. In
Proceedings of the 12th international conference on architectural
support for programming languages and operating systems (ASPLOS),
pages. 283-292, 2006.

[5] M. R. Choudhury and K. Mohanram. Masking timing errors on speed-
paths in logic circuits. In Design, Automation & Test in Europe
Conference & Exhibition,(DATE '09), pages. 87-92, 2009.

[6] L. Chunho, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: a
tool for evaluating and synthesizing multimedia and communications
systems. In Proceedings of the Thirtieth Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-30), pages.
330-335, 1997.

[7] M. de Kruijf, S. Nomura, and K. Sankaralingam. A unified model for
timing speculation: Evaluating the impact of technology scaling, CMOS
design style, and fault recovery mechanism. In Proceedings of the 2010
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN) , pages. 487-496, 2010.

[8] D. Ernst, K. Nam Sung, S. Das, S. Pant, R. Rao, P. Toan, C. Ziesler, D.
Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: a low-power
pipeline based on circuit-level timing speculation. In Proceedings of the
36th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-36), pages. 7-18, 2003.

[9] F. Firouzi, M. E. Salehi, F. Wang, and S. M. Fakhraie, “An accurate
model for soft error rate estimation considering dynamic voltage and
frequency scaling effects,” Microelectronics Reliability, In Press, 2010.

[10] J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf, “MediaBench II
video: Expediting the next generation of video systems research,”
Microprocessors and Microsystems, vol. 33, no. 4, pages. 301-318,
2009.

[11] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph
execution profiler,” SIGPLAN Not., vol. 17, no. 6, pages. 120-126, 1982.

[12] B. Greskamp, W. Lu, U. R. Karpuzcu, J. J. Cook, J. Torrellas, C.
Deming, and C. Zilles. Blueshift: Designing processors for timing
speculation from the ground up. In Proceesings of the 15th IEEE
International Symposium on High Performance Computer Architecture
(HPCA),pages. 213-224, 2009.

[13] S. Harizopoulos and A. Ailamaki, “StagedDB: Designing Database
Servers for Modern Hardware,” IEEE Data Eng. Bull., vol. 28, no. 2,
pages. 11-16, 2005.

[14] R. Hegde and N. R. Shanbhag. Energy-efficient signal processing via
algorithmic noise-tolerance. In Proceedings of the 1999 International

7

Symposium on Low Power Electronics and Design (ISLPED), pages. 30-
35, 1999.

[15] M. Horowitz, E. Alon, D. Patil, S. Naffziger, K. Rajesh, and K.
Bernstein. Scaling, power, and the future of CMOS. In Electron Devices
Meeting. IEDM Technical Digest. IEEE International, pages. 7 pp.-15,
2005.

[16] V. Wong, M. Horowitz. Soft Error Resilience of Probabilistic Inference
Applications. In Proceedings of the Workshop on System Effects of
Logic Soft Errors (SELSE), 2006.

[17] C. Hu, “Future CMOS scaling and reliability,” Proceedings of the IEEE,
vol. 81, no. 5, pages. 682-689, 1993.

[18] A. Johansson. Software Implemented Fault Injection Used for Software
Evaluation. in Building Reliable Component-Based Systems, I. Crnkovic
and M. Larsson, Eds., ed: Artech House, 2002.

[19] A. B. Kahng, K. Seokhyeong, R. Kumar, and J. Sartori. Designing a
processor from the ground up to allow voltage/reliability tradeoffs. In
Proceedings of the 16th IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages. 1-11, 2010.

[20] A. B. Kahng, K. Seokhyeong, R. Kumar, and J. Sartori. Recovery-driven
design: A power minimization methodology for error-tolerant processor
modules. In Proceedings of the 47th ACM/IEEE Design Automation
Conference (DAC), pages. 825-830, 2010.

[21] A. B. Kahng, K. Seokhyeong, R. Kumar, and J. Sartori. Slack
redistribution for graceful degradation under voltage overscaling. In
Proceedings of the 15th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages. 825-831, 2010.

[22] J. Kwangok, A. B. Kahng, and K. Samadi, “Impact of Guardband
Reduction On Design Outcomes: A Quantitative Approach,” In IEEE
Transactions on Semiconductor Manufacturing, vol. 22, no. 4, pages.
552-565, 2009.

[23] X. Li and D. Yeung. Application-Level Correctness and its Impact on
Fault Tolerance. In Proceedings of the 13th IEEE International
Symposium on High Performance Computer Architecture (HPCA),
pages. 181-192, 2007.

[24] A. Mallik and G. Memik. A Case for Clumsy Packet Processors. In
Proceedings of the 37th annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-37), pages. 147-156, 2004.

[25] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin. A
systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor. In Proceedings of the
36th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-36), pages. 29-40, 2003.

[26] J. Patel. CMOS Process Variations: A Critical Operation Point
Hypothesis. ed. Computer Systems Colloquium: Stanford University,
2008.

[27] S. R. Quackenbush, T. P. Barnwell, and M. A. Clements. Objective
measures of speech quality. Englewood Cliffs, N.J.: Prentice Hall, 1988.

[28] D. Roberts, T. Austin, D. Blauww, T. Mudge, and K. Flautner. Error
analysis for the support of robust voltage scaling. In Proceedings of the
Sixth International Symposium on Quality of Electronic Design
(ISQED), pages. 65-70, 2005.

[29] S. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas. EVAL: Utilizing
processors with variation-induced timing errors. In Proceedings of the
41st IEEE/ACM International Symposium on Microarchitecture
(MICRO-41), pages. 423-434, 2008.

[30] R. A. Shafik, B. M. Al-Hashimi, and K. Chakrabarty. Soft error-aware
design optimization of low power and time-constrained embedded
systems. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages. 1462-1467, 2010.

[31] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi.
Modeling the effect of technology trends on the soft error rate of
combinational logic. In Proceedings of the 2002 International
Conference on Dependable Systems and Networks (DSN), pages. 389-
398, 2002.

[32] A. Shye, B. Scholbrock, and G. Memik. Into the wild: studying real user
activity patterns to guide power optimizations for mobile architectures.
In Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages. 168-178, 2009.

[33] A. Shye, P. Yan, B. Scholbrock, J. S. Miller, G. Memik, P. A. Dinda,
and R. P. Dick. Power to the people: Leveraging human physiological
traits to control microprocessor frequency. In Proceedings of the 41st

IEEE/ACM International Symposium on Microarchitecture (MICRO-
41), pages. 188-199, 2008.

[34] R. R. Some, W. S. Kim, G. Khanoyan, L. Callum, A. Agrawal, and J. J.
Beahan. A software-implemented fault injection methodology for design
and validation of system fault tolerance. In Proceedings of the 2001
International Conference on Dependable Systems and Networks (DSN
2001) pages. 501-506, 2001.

[35] T. Veldhuizen. "Measures of image quality," 2010;
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/VELDH
UIZEN/node18.html.

[36] L. A. Zadeh, “Fuzzy logic, neural networks, and soft computing,”
Commun. ACM, vol. 37, no. 3, pages. 77-84, 1994.

[37] L. A. Zadeh, “Some reflections on soft computing, granular computing
and their roles in the conception, design and utilization of
information/intelligent systems,” Soft Computing - A Fusion of
Foundations, Methodologies and Applications, vol. 2, no. 1, pages. 23-
25, 1998.

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/VELDHUIZEN/node18.html�
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/VELDHUIZEN/node18.html�

	3.1 Error Injection
	3.2 Metrics for Analysis and Quality Comparisons
	4.1 The Impact of Bit Selection on Successful Runs
	4.2 The Impact of Bit Selection on Output Quality
	The Impact of Error Rate on Output Quality
	4.4 Power Savings

