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ABSTRACT 
 

Power dissipation and energy consumption have become one of the most important problems in the design of 
processors today. This is especially true in power-constrained environments, such as embedded and mobile 
computing.  While lowering the operational voltage can reduce power consumption, there are limits imposed at 
design time, beyond which hardware components experience faulty operation. Moreover, the decrease in feature size 
has led to higher susceptibility to process variations, leading to reliability issues and lowering yield. However, not all 
computations and all data in a workload need to maintain 100% fidelity. In this paper, we explore the idea of 
employing functional or storage units that let go the conservative guardbands imposed on the design to guarantee 
reliable execution. Rather, these units exhibit Elastic Fidelity, by judiciously lowering the voltage to trade-off reliable 
execution for power consumption based on the error guarantees required by the executing code. By estimating the 
accuracy required by each computational segment of a workload, and steering each computation to different 
functional and storage units, Elastic Fidelity Computing obtains power and energy savings while reaching the 
reliability targets required by each computational segment. Our preliminary results indicate that even with 
conservative estimates, Elastic Fidelity can reduce the power and energy consumption of a processor by 11-13% 
when executing applications involving human perception that are typically included in modern mobile platforms, 
such as audio, image, and video decoding. 

Keywords Energy efficiency, hardware reliability, error tolerance, elastic fidelity  
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Abstract  
Power dissipation and energy consumption have become one of the 
most important problems in the design of processors today. This is 
especially true in power-constrained environments, such as embedded 
and mobile computing.  While lowering the operational voltage can 
reduce power consumption, there are limits imposed at design time, 
beyond which hardware components experience faulty operation. 
Moreover, the decrease in feature size has led to higher susceptibility 
to process variations, leading to reliability issues and lowering yield. 
However, not all computations and all data in a workload need to 
maintain 100% fidelity. In this paper, we explore the idea of 
employing functional or storage units that let go the conservative 
guardbands imposed on the design to guarantee reliable execution. 
Rather, these units exhibit Elastic Fidelity, by judiciously lowering 
the voltage to trade-off reliable execution for power consumption 
based on the error guarantees required by the executing code. By 
estimating the accuracy required by each computational segment of a 
workload, and steering each computation to different functional and 
storage units, Elastic Fidelity Computing obtains power and energy 
savings while reaching the reliability targets required by each 
computational segment. Our preliminary results indicate that even 
with conservative estimates, Elastic Fidelity can reduce the power 
and energy consumption of a processor by 11-13% when executing 
applications involving human perception that are typically included 
in modern mobile platforms, such as audio, image, and video 
decoding. 

Keywords Energy efficiency, hardware reliability, error tolerance, 
elastic fidelity  

1. Introduction 
Continued technology scaling in IC design has made power 
dissipation a major constraint in the design of processors today. 
Although feature sizes are still scaling, voltage scaling has nearly 
stopped due to high leakage currents associated with low threshold 
voltages. This has lead to a dramatic increase in power density with 
decreasing feature size [15]. On the other hand, the scaling of the 
feature sizes has made chips more susceptible to problems of 
variability and hardware faults. These faults originate from process 
variations, soft errors and wear outs, hampering reliable execution [1, 
17]. 

Traditionally, the operating points of processors have been 
determined by conservative guardbands based on worst-case 
scenarios. A guarband refers to the timing differential inserted into 
the hardware design to allow for signals to communicate without 
being perfectly aligned. However, this design approach results in 

significant overheads in both power and performance [22]. This leads 
to an interesting question: What if we let go of these guardbands and 
allow components of the processor to fail sometimes with the errors 
accommodated at the architectural and software levels? By following 
laws of transistor physics, keeping all else constant, decreasing the 
operating voltage (Vdd) would reduce power consumption at a 
quadratic rate, at the expense of some timing errors. 

Prior research has shown that in every large CMOS chip, there 
exist two voltage operating points – the rated voltage point and the 
critical voltage point [19, 26]. This leads to three operating regions 
for the processor. First, when the supply voltage is at or above the 
rated voltage, the processor runs at full accuracy without any errors. 
Second, when the processor operates at a supply voltage between the 
rated and critical voltage points, small-scale errors emerge due to 
timing violations in worst-case situations. And last, operating at a 
voltage beyond this critical point leads to massive errors. 

In this paper, we propose the idea of operating processor 
components (e.g., functional units) at the region of supply voltage 
between the rated and critical operating points, to attain significant 
reductions in power while meeting the reliability requirements 
requested by each section of the executing application. The errors 
originating due to this are accommodated at the software layer by 
exploiting the fact that different sections of the code require variable 
reliability guarantees to present acceptable results to the user. We 
envision that programming language constructs can denote the 
reliability guarantees required by different sections of the code; these 
requirements are communicated to the hardware during execution, 
which steers the computation to corresponding functional and storage 
units operating at the lowest voltage that meets the required reliability 
constraints. By not treating all code and all data the same from the 
viewpoint of reliability requirements, Elastic Fidelity Computing 
exploits sections of the computation that are error-tolerant to lower 
power and energy consumption, without negatively impacting 
executions that require full reliability. 

To explore the feasibility of this idea, we examine the error 
tolerance of a range of applications involving human perception in 
the realms of audio, image and video decompression in the presence 
of computation errors in the ALUs. We demonstrate that: 
 

1. Different portions of an application’s dataset exhibit variable 
error tolerance. For example, errors occurring in the low-
significance bits have a lesser effect in the application behavior 
than those occurring in higher-significance bits. 
 

2. Different portions of an application’s code exhibit variable error 
tolerance. There are some functions that show negligible effects, 
while others result in a program crash even if the least 
significant bit is flipped. 
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3. Our preliminary results on stock kernels (without any 
modifications) indicate that Elastic Fidelity Computing reduces 
the processor power and energy by 11-13% for our applications, 
even if we allow only the ALUs to exhibit Elastic Fidelity. We 
anticipate that expanding this idea to more execution and storage 
components of a processor would result in much higher power 
savings. 

 

The remainder of the paper is organized as follows. Section II 
discusses the underlying idea of error tolerance and Elastic Fidelity 
Computing. Section III describes our experimental methodology 
while Section IV reports the results and analyses of our study. 
Finally, Section V presents related work and section VI concludes the 
paper.  

2. Elastic Fidelity and Software Behavior 
Traditionally, program execution is said to be correct if and only if 
the underlying computations are perfect. However, a program may 
still appear to execute correctly if it returns acceptable results from 
the user’s perspective, even if there is some noise in the data or 
inaccuracies in the computation [23].   

Prior work such as that in [23] shows that the level of error 
tolerance is application-dependent and depends on how accurate a 
program’s output needs to be. There are applications which are highly 
resilient inherently and there are others which are very little. 
Important examples of highly-resilient applications come from the 
class of soft computing. Unlike hard or exact computing, soft 
computing takes advantage of the tolerance of imprecision, 
uncertainty and approximation for a given problem – resulting in 
acceptable rather than exact results [36, 37]. Multimedia applications 
offer a very interesting example of soft computing. These 
applications primarily depend on human perception and allow 
considerable leeway in terms of accuracy. Moreover, such 
applications are typically included in modern mobile platforms and 
are heavily exercised by users. Similarly, there are applications that 
already assume unreliable substrates and already have error-
correcting capabilities (e.g., networking applications [24]). Other 
examples include Artificial Intelligence applications on forecasting, 
inference and data mining, scientific computing (e.g., simulations of 
oceanic currents, weather forecasting), or computations on already 
noisy data (e.g., sensor readings).  Such workloads tend to perform 
computations on approximations, and through multiple iterations 
narrow down to a set of results that are within a qualitative threshold 
according to the user requirements. On the other hand, other 
applications rely on exact numerical results and are generally 
intolerant of errors. Examples include memory management in the 
operating system, code compilation and lossless data compression. 

Looking further into error-resilient applications, we envisage that 
different portions of the execution offer different error tolerance. For 
example, pointer operations and control logic such as conditional and 
branch statements are highly sensitive to errors. A corrupt pointer 
would usually lead to a segmentation fault while a corrupt control 
would notably disorder the program execution. On the other hand, 
operations involving standard arithmetic computations such as matrix 
processing and decoding are generally error-tolerant and have a 
relatively benign effect on the final result of the program.  

In view of these observations, we propose the idea of exploiting 
the elastic fidelity of computations by varying the reliability of the 
underlying hardware according to the application needs at each point 
in time. Portions of the application that are error-sensitive are 
executed at full reliability, while the ones that are error-tolerant are 
run on variable accuracy to produce an acceptable result to the end 

user. As discussed in the previous section, the reliability of the 
underlying hardware can be varied by running it on a region between 
the rated and critical voltage points, resulting in power savings. This 
scheme can be implemented at the granularity of a core, in both 
single and multi-core systems. In the former case, the operation of the 
core can be dynamically changed between full (100%) and variable 
accuracy, according to the requirements of the executing code 
segment.  In the latter case, certain cores run on full accuracy to 
accommodate the error-sensitive operations, while others run on 
variable accuracy to compute error-tolerant operations. Techniques 
like staged execution [13] and computation spreading [4] can 
facilitate execution migration between the various cores. Similarly, 
Elastic Fidelity can be implemented at a finer granularity by varying 
the fidelity guarantees of individual functional units or storage 
elements within a single core. Fig 1 illustrates such an example with 
ALUs. 

From the viewpoint of software design, Elastic Fidelity can be 
implemented through programming constructs. A programmer 
specifies which variables and code segments are allowable to 
hardware errors and their tolerance margins. In turn, the compiler 
maps these constructs to specialized instructions that direct the core 
to steer the computation to a functional unit with a specific reliability 
level, by changing its operating voltage.  On the hardware end, 
dynamic voltage scaling and calibration circuitry minimize the power 
consumption at a given reliability level, based on experimental 
models of hardware behavior at each voltage level. The fidelity 
requirements of each code/data segment can be estimated using 
feedback optimization tools. 

There have been emerging hardware designs that allow operation 
in less-than-perfect reliability levels. These are discussed in Related 
Work (Section V). However, to the best of our knowledge, there is a 
lack of research in understanding how errors in different code/data 
segments under these reduced reliability conditions impact the overall 
accuracy of the end result. In this paper we explore the idea of 
exposing the elastic fidelity requirements of software components to 
the hardware layer, in order to reduce power and conserve energy 
while maintaining accuracy guarantees. 

Figure 1.  Implementing elastic fidelity using (a) a single ALU, 
and (b) multiple ALUs 
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3. Experimental Methodology 
We run multimedia kernels from the MediaBench I and II 
benchmarking suites [6, 10] on an x86 multicore server, and simulate 
elastic-fidelity ALUs by injecting errors in the computations at run 
time through software wrappers. Table 1 lists the applications we use 
in our experiments. G.721-D performs audio decompression of the 
G.721 ADPCM speech codec, JPEG-D decompresses a JPEG picture, 
and H.263-D decompresses compressed video [6].  To judge the 
quality of the computation, we use segmented signal to noise ratio 
(SNRseg) for G.721 and peak signal to noise ratio (PSNR) for JPEG 
and H.263 [27, 35]. 

Table 1.     Application Kernels & Quality Metrics 

Kernel Application Quality Metric 

G.721-D 
Audio 
decompression 

Segmented Signal to Noise Ratio 
(SNRseg) 

JPEG-D 
Image 
decompression Peak Signal to Noise Ratio (PSNR) 

H.263-D 
Video 
decompression Peak Signal to Noise Ratio (PSNR) 

 
For these applications, we take a raw sample, and run it through 

the respective encoder to get a compressed file. This compressed file 
is then decoded using the error-injected kernel to get its 
decompressed equivalent. This file is compared with the original 
sample to obtain the quality metric. 

3.1 Error Injection 

We model hardware errors pertaining only to the ALU on a 32-bit 
data width. This is implemented by injecting errors on the application 
at run time through software implemented fault injection (SWIFI) 
using software wrappers [18, 34].  These software wrappers model 
hardware errors by flipping bits on the 32-bit bus at a given 
probability (error rate). However, as discussed in Section II, we 
exclude pointer and branch operations from injecting errors to ensure 
program stability.  

The use of software wrappers allows flexibility in inserting 
errors in selective locations and helps us to study the behavior of the 
application not only when errors are injected in the entire 
computation, but also when they are injected during the execution of 
specific functions. To gain finer granularity, we vary the bit positions 
we flip. For example, an application might behave completely 
differently when errors occur in the 16 most significant bits (MSBs) 
than when they occur in the 16 least significant bits (LSB) on the 
ALU. These observations are discussed further in Section IV. For 
every condition, we run our experiments 1000 times to get 
statistically significant results. 

3.2 Metrics for Analysis and Quality Comparisons 

To analyze the behavior of the applications, we perform our 
experiments first by modifying the range of bits to be subjected to 
error, and then by varying the error probability (error rate). 

1) Bits Subjected to Error: Starting from the least significant bit, 
we systematically increase the range of error injection towards the 
most significant bit, covering the entire 32-bit data width of the ALU. 
The error probability is kept at 4%. This gives a comprehensive view 
of the susceptibility of the application to the location of the errors in 
the bus. In most cases, errors in the least significant bits affect the 
operation of the program less significantly than those in the most 
significant bits. In addition, as the scope of error in the bus increases, 

the error in the computation might go beyond the tolerance of the 
application, leading it to terminate abruptly. To capture this behavior, 
we obtain two metrics – number of successful runs, and output 
quality (SNRseg for the audio, and PSNR for the image and video 
decoding applications). 

2) Error Rate: By analyzing the error susceptibility of the 
application from the prior metrics, we select an optimal range of the 
bits to allow errors on. This is done to ensure that the program 
completes successfully at each run. In this case, the error rate is 
varied to obtain the quality of the output (SNRseg or PSNR). This 
illustrates the behavior of the application with increasing hardware 
error rates. The metrics are obtained for errors injected not only in the 
entire application but also in individual functions to determine their 
tolerances.  

4. Results & Analysis 

4.1 The Impact of Bit Selection on Successful Runs 

Fig 2 (a), (d), and (g) plots the number of successful runs (normalized 
to the error-free execution) for the test kernels. The graphs show the 
behavior of the entire application as well as when injecting errors 
only within major functions. In the case of G.721-D, every function 
runs successfully, even in the presence of errors. However, this is not 
the case for JPEG-D and H.263-D. For JPEG-D, the upsampling 
function crashes when the 10th least significant bit in the data bus is 
introduced to error; entropy decoding crashes when errors are 
injected at the 19th least significant bit. Similarly, for H.263-D, the 
motion compensation block is highly sensitive to errors and crashes 
even when errors are injected in the 2nd least significant bit. The 
Huffman decoding and reconstruction functions follow soon, 
crashing at the 12th and the 14th LSB respectively, while inverse DCT 
is error-resilient and causes crashes only after the 29th bit is flipped.  

4.2 The Impact of Bit Selection on Output Quality 

Fig 2 (b), (e), and (h) plots the decoding quality (SNRseg or PSNR) 
for the entire application and respective functions. In the case of 
JPEG-D and H.263-D, we see an anticipated behavior of decrease in 
the output quality as the higher significant bits are subjected to error. 
G.721-D shows a peculiar behavior in the fact that the SNRseg 
decreases up to bit 16 and then starts rising.  This anomaly is due to 
the fact that most of the computations are performed with short int 
(16 bits) data type. As we increase the scope of error beyond the 
16bits, the individual probability of bitflips for the first 16 bits 
decreases, thus reducing the effect on the computations. 

From the results discussed above, we select the range of 8 least 
significant bits (bit positions 0-7) to be subjected to error for our 
preliminary analysis of the application behavior with respect to 
increasing error rates. This is done for two reasons – first errors in the 
first 8 bits do not affect the output quality significantly and keep it at 
acceptable levels (> 10dB SNRseg for G.721, > 25dB PSNR for 
JPEG, and > 30dB PSNR for H.263). Second, the programs run 
stably without crashing with errors in this region. 

Additionally, we observe that entropy decoding in JPEG-D and 
motion compensation in H.263-D reduce the output quality 
drastically when injected with errors. Thus, we choose to provide full 
accuracy to these functions to get a meaningful output. While 
graphing the behavior of the entire application (curve marked “All”), 
we exclude error injection in entropy decoding and motion 
compensation while the remaining application is subjected to the 
same error rate. 
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4.3 The Impact of Error Rate on Output Quality 

Fig 2 (c), (f), and (i) plots the decoding output quality for each 
application with increasing error rate.  In the case of G.721-D, the 
quantization, step size and predictor functions are more error-tolerant 
than the reconstruction function. For JPEG-D, upsampling and 
quantization show similar tolerance with entropy decoding having the 
lowest. Finally in the case of H.263-D, inverse DCT is not affected 
by errors in the range of bit positions we consider, while motion 
compensation is highly sensitive.  

4.4 Power Savings 

As seen from the graphs in Fig 2 (c), (f), and (i), the maximum error 
rate for acceptable output quality is 7% for G.721-D (SNRreg > 
10dB), 4% for JPEG-D (PSNR > 25dB) and 6% for H.263-D (PSNR 
> 30dB). This is for the case when the entire application is subjected 
to a uniform error rate. However, by adding variable fidelity levels to 
the different function routines, Elastic Fidelity Computing can 
withstand even lower accuracies (higher error rate) for the same 
output quality level. After determining the corresponding error levels 
for each major segment of each application, we estimate the power 
consumption by equating the percentage of dynamic instructions 
subjected to error [11] with the hardware error-power model 
presented in [19]. The power consumption is normalized to the power 
of the processor in error-free operation. 

Table 2.     Estimation of Power Consumption 

Application 
@ error rate per function 

Instructions 
subjected to 
error 

Normalized 
processor power 
consumption 

G.721 audio decoding 
Quantization @10%, 0-15 bits; 
Step Size @10%, 0-7 bits; 
Predictors @10%, 0-7 bits; 
all else @4%, 0-7 bits 

80.7% 0.89 

JPEG image decoding  
Entropy @0%; 
Quantization @6%, 0-7 bits; 
Upsampling @5%, 0-7 bits; 
all else @4%; 0-7 bits 

70.5% 0.88 

H.263 video decoding  
Motion compensation @0%; 
IDCT @10%, 0-28 bits; 
all else @6%; 0-7 bits) 

64.2% 0.87 

 
From Table 2, it is evident that even without any modification to 

the program, and even when allowing only the ALUs to exhibit 
variable fidelity, Elastic Fidelity Computing lowers the power 
consumption of the processor by 11-13%. Because the execution time 
does not change for these applications when errors are injected in the 
corresponding functions, the power savings also correspond to energy 
savings. As our results are highly conservative, we envisage the 
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power savings to be significantly higher once the application is 
written in a fidelity-aware approach with the necessary program 
constructs, and when more functional and storage units employ 
elastic fidelity (rather than only ALUs).  

5. Related Work 
There has been in depth research in modeling the behavior of 
hardware due to voltage scaling and process variability [7, 9, 28], 
along with techniques to prevent them [2, 5, 30]. New designs based 
on better-than-worst-case (BWTC) scenarios have been developed, 
which relax the design guardbands and perform error recovery when 
required. Designs such as Razor [8] perform error correction at the 
hardware through the use of additional circuitry, while [14] corrects 
the errors at the algorithmic level. The benefits of these techniques in 
the scope of power reduction are limited due to their error recovery 
overheads. Moreover, they are orthogonal to Elastic Fidelity and can 
be used synergistically with it to lower the power and energy 
consumption even further. In addition, there has been recent work in 
optimizing the most frequently exercised paths in hardware at the 
cost of timing errors in the infrequent ones [29]. Techniques like 
BlueShift [12] work on this principle and optimize the circuit for 
maximum operating frequency for a given error rate. However, these 
developments focus on error correction rather than error tolerance 
and none of them look into the idea of allowing the errors to 
propagate into the software. 

The most significant work related to Elastic Fidelity appears in a 
related project [19, 20, 21] which targets processor designs that keep 
voltage-reliability trade-offs in mind. This study minimizes processor 
power for a given error rate. This differs from our work, as it deals 
with designing the underlying hardware, while we focus on the 
feasibility of software to take advantage of this phenomenon.    

On the software side, a considerable amount of research has been 
performed on the effect of single event upsets on software behavior 
[3, 16, 23, 25, 31] due to the rising  reliability issues resulting from 
decreasing feature size.  However, we find that not much has been 
done in the case of continued errors as presented in this paper. Unlike 
single event upsets, these errors occur continuously due to faulty 
hardware (as a result of voltage over-scaling in this case.) 

Finally, research on empathic systems [32, 33] considers human 
perception and user satisfaction to guide power optimizations. 
Contrary to our work, empathic systems do not trade-off accuracy for 
power; rather, they trade-off user satisfaction for power. However, 
similarly to empathic systems, our output quality metrics for the 
applications we study in this paper are also exploiting human 
perception to arrive at a result that is good enough, but not 
necessarily “perfect”. 

6. Conclusion 
We observe that not all computations and data in a workload need to 
maintain 100% fidelity. Our results indicate that some functions in an 
application are far more error resilient than others. Similarly, errors in 
certain portions of an application’s dataset may cause virtually no 
change in its operation, while errors in other portions may affect the 
final outcome significantly (e.g., errors in LSB vs. MSB bits 
respectively).  Elastic Fidelity Computing exploits the variable 
accuracy requirements within an application to vary the reliability of 
the underlying hardware according to the application needs at each 
point in time. Portions of the application that are error-sensitive 
execute at full reliability, while the ones that are error-tolerant run on 
variable accuracy to produce an acceptable result to the end user. In 
turn, the hardware can let go the conservative guardbands imposed on 
the design to guarantee reliable execution. Instead, hardware may 

operate at voltage levels low enough to induce errors, but high 
enough to maintain reasonable output quality. 

Our results indicate that Elastic Fidelity Computing can lower the 
power and energy consumption of workloads pertaining to human 
perception by 11-13%, while keeping their output quality within 
acceptable levels. Our results are very conservative, as we assume no 
modifications to the software, and we assume that only ALUs employ 
elastic fidelity. We anticipate that by incorporating error-aware 
design in software, and by extending elastic fidelity operation to more 
hardware components in a system, the power and energy savings 
would be significantly higher. Thus, by striking a balance between 
computational accuracy and supply voltage, and through 
software/hardware cooperation, Elastic Fidelity Computing shows 
promise in successfully tackling the ongoing power crisis in 
processor design. 
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