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1. Introduction 

Continued technology scaling in IC design has made power dissipation a major constraint in the 
design of processors today. Although feature sizes are still scaling, voltage scaling has nearly 
stopped due to high leakage currents associated with low threshold voltages. This has lead to a 
dramatic increase in power density with decreasing feature size [15]. On the other hand, the scaling 
of the feature sizes has made chips more susceptible to problems of variability and hardware faults. 
These faults originate from process variations, soft errors and wear outs, hampering reliable 
execution [1, 17]. 

Traditionally, the operating points of processors have been determined by conservative 
guardbands based on worst-case scenarios. A guarband refers to the timing differential inserted 
into the hardware design to allow for signals to communicate without being perfectly aligned. 
However, this design approach results in significant overheads in both power and performance 
[22]. This leads to an interesting question: What if we let go of these guardbands and allow 
components of the processor to fail sometimes with the errors accommodated at the architectural 
and software levels? By following laws of transistor physics, keeping all else constant, decreasing 
the operating voltage (Vdd) would reduce power consumption at a quadratic rate, at the expense of 
some timing errors. 

Prior research has shown that in every large CMOS chip, there exist two voltage operating points 
– the rated voltage point and the critical voltage point [19, 26]. This leads to three operating regions 
for the processor. First, when the supply voltage is at or above the rated voltage, the processor runs 
at full accuracy without any errors. Second, when the processor operates at a supply voltage 
between the rated and critical voltage points, small-scale errors emerge due to timing violations in 
worst-case situations. And last, operating at a voltage beyond this critical point leads to massive 
errors. 

In this report and the associated research study, we propose the idea of operating processor 
components (e.g., functional units) at the region of supply voltage between the rated and critical 
operating points, to attain significant reductions in power while meeting the reliability 
requirements requested by each section of the executing application. The errors originating due to 
this are accommodated at the software layer by exploiting the fact that different sections of the 
code require variable reliability guarantees to present acceptable results to the user. We envision 
that programming language constructs can denote the reliability guarantees required by different 
sections of the code; these requirements are communicated to the hardware during execution, 
which steers the computation to corresponding functional and storage units operating at the lowest 
voltage that meets the required reliability constraints. By not treating all code and all data the same 
from the viewpoint of reliability requirements, Elastic Fidelity Computing exploits sections of the 
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computation that are error-tolerant to lower power and energy consumption, without negatively 
impacting executions that require full reliability. 

To explore the feasibility of this idea, we examine the error tolerance of a range of applications 
involving human perception in the realms of audio, image and video decompression in the presence 
of computation errors in the ALUs. We demonstrate that: 

 

1. Different portions of an application’s dataset exhibit variable error tolerance. For example, 
errors occurring in the low-significance bits have a lesser effect in the application behavior than 
those occurring in higher-significance bits. 
 

2. Different portions of an application’s code exhibit variable error tolerance. There are some 
functions that show negligible effects, while others result in a program crash even if the least 
significant bit is flipped. 

 

3. Our preliminary results on stock kernels (without any modifications) indicate that Elastic 
Fidelity Computing reduces the processor power and energy by 11-13% for our applications, 
even if we allow only the ALUs to exhibit Elastic Fidelity. We anticipate that expanding this idea 
to more execution and storage components of a processor would result in much higher power 
savings. 

 
The remainder of the report is organized as follows. Section 2 discusses the underlying idea of 

error tolerance and Elastic Fidelity Computing. Section 3 describes our experimental methodology 
while Section 4 reports the results and analyses of the study. Finally, Section 5 presents related 
work and section 6 concludes the report.  

2. Elastic Fidelity & Software Behavior 

Traditionally, program execution is said to be correct if and only if the underlying computations are 
perfect. However, a program may still appear to execute correctly if it returns acceptable results 
from the user’s perspective, even if there is some noise in the data or inaccuracies in the 
computation [23].   

Prior work such as that in [23] shows that the level of error tolerance is application-dependent 
and depends on how accurate a program’s output needs to be. There are applications which are 
highly resilient inherently and there are others which are very little. Important examples of highly-
resilient applications come from the class of soft computing. Unlike hard or exact computing, soft 
computing takes advantage of the tolerance of imprecision, uncertainty and approximation for a 
given problem – resulting in acceptable rather than exact results [36, 37]. Multimedia applications 
offer a very interesting example of soft computing. These applications primarily depend on human 
perception and allow considerable leeway in terms of accuracy. Moreover, such applications are 
typically included in modern mobile platforms and are heavily exercised by users. Similarly, there 
are applications that already assume unreliable substrates and already have error-correcting 
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capabilities (e.g., networking applications [24]). Other examples include Artificial Intelligence 
applications on forecasting, inference and data mining, scientific computing (e.g., simulations of 
oceanic currents, weather forecasting), or computations on already noisy data (e.g., sensor 
readings).  Such workloads tend to perform computations on approximations, and through multiple 
iterations narrow down to a set of results that are within a qualitative threshold according to the 
user requirements. On the other hand, other applications rely on exact numerical results and are 
generally intolerant of errors. Examples include memory management in the operating system, 
code compilation and lossless data compression. 

Looking further into error-resilient applications, we envisage that different portions of the 
execution offer different error tolerance. For example, pointer operations and control logic such as 
conditional and branch statements are highly sensitive to errors. A corrupt pointer would usually 
lead to a segmentation fault while a corrupt control would notably disorder the program execution. 
On the other hand, operations involving standard arithmetic computations such as matrix 
processing and decoding are generally error-tolerant and have a relatively benign effect on the final 
result of the program.  

In view of these observations, we propose the idea of exploiting the elastic fidelity of 
computations by varying the reliability of the underlying hardware according to the application 
needs at each point in time. Portions of the application that are error-sensitive are executed at full 
reliability, while the ones that are error-tolerant are run on variable accuracy to produce an 
acceptable result to the end user. As discussed in the previous section, the reliability of the 
underlying hardware can be varied by running it on a region between the rated and critical voltage 
points, resulting in power savings. This scheme can be implemented at the granularity of a core, in 
both single and multi-core systems. In the former case, the operation of the core can be dynamically 
changed between full (100%) and variable accuracy, according to the requirements of the executing 
code segment.  In the latter case, certain cores run on full accuracy to accommodate the error-
sensitive operations, while others run on variable accuracy to compute error-tolerant operations. 
Techniques like staged execution [13] and computation spreading [4] can facilitate execution 
migration between the various cores. Similarly, Elastic Fidelity can be implemented at a finer 
granularity by varying the fidelity guarantees of individual functional units or storage elements 
within a single core. Fig 1 illustrates such an example with ALUs. 

 

 

 

 

 

 
Figure 1.  Implementing elastic fidelity using (a) a single ALU, and (b) multiple ALUs 
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From the viewpoint of software design, Elastic Fidelity can be implemented through 
programming constructs. A programmer specifies which variables and code segments are allowable 
to hardware errors and their tolerance margins. In turn, the compiler maps these constructs to 
specialized instructions that direct the core to steer the computation to a functional unit with a 
specific reliability level, by changing its operating voltage.  On the hardware end, dynamic voltage 
scaling and calibration circuitry minimize the power consumption at a given reliability level, based 
on experimental models of hardware behavior at each voltage level. The fidelity requirements of 
each code/data segment can be estimated using feedback optimization tools. 

There have been emerging hardware designs that allow operation in less-than-perfect reliability 
levels. These are discussed in Related Work (Section V). However, to the best of our knowledge, 
there is a lack of research in understanding how errors in different code/data segments under 
these reduced reliability conditions impact the overall accuracy of the end result. In this report we 
explore the idea of exposing the elastic fidelity requirements of software components to the 
hardware layer, in order to reduce power and conserve energy while maintaining accuracy 
guarantees. 

3. Experimental Methodology 

We run multimedia kernels from the MediaBench I and II benchmarking suites [6, 10] on an x86 
multicore server, and simulate elastic-fidelity ALUs by injecting errors in the computations at run 
time through software wrappers. Table 1 lists the applications we use in our experiments. G.721-D 
performs audio decompression of the G.721 ADPCM speech codec, JPEG-D decompresses a JPEG 
picture, and H.263-D decompresses compressed video [6].  To judge the quality of the computation, 
we use segmented signal to noise ratio (SNRseg) for G.721 and peak signal to noise ratio (PSNR) for 
JPEG and H.263 [27, 35]. 

 
Table 1.     Application Kernels & Quality Metrics 

Kernel Application Quality Metric 

G.721-D Audio decompression Segmented Signal to Noise Ratio (SNRseg) 

JPEG-D Image decompression Peak Signal to Noise Ratio (PSNR) 

H.263-D Video decompression Peak Signal to Noise Ratio (PSNR) 

For these applications, we take a raw sample, and run it through the respective encoder to get a 
compressed file. This compressed file is then decoded using the error-injected kernel to get its 
decompressed equivalent. This file is compared with the original sample to obtain the quality 
metric. 
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3.2 Error Injection 

We model hardware errors pertaining only to the ALU on a 32-bit data width. This is implemented 
by injecting errors on the application at run time through software implemented fault injection 
(SWIFI) using software wrappers [18, 34].  These software wrappers model hardware errors by 
flipping bits on the 32-bit bus at a given probability (error rate). However, as discussed in Section 
II, we exclude pointer and branch operations from injecting errors to ensure program stability.  

The use of software wrappers allows flexibility in inserting errors in selective locations and 
helps us to study the behavior of the application not only when errors are injected in the entire 
computation, but also when they are injected during the execution of specific functions. To gain 
finer granularity, we vary the bit positions we flip. For example, an application might behave 
completely differently when errors occur in the 16 most significant bits (MSBs) than when they 
occur in the 16 least significant bits (LSB) on the ALU. These observations are discussed further in 
Section IV. For every condition, we run our experiments 1000 times to get statistically significant 
results. 

3.3 Metrics for Analysis and Quality Comparisons 

To analyze the behavior of the applications, we perform our experiments first by modifying the 
range of bits to be subjected to error, and then by varying the error probability (error rate). 

1) Bits Subjected to Error: Starting from the least significant bit, we systematically increase the 
range of error injection towards the most significant bit, covering the entire 32-bit data width of the 
ALU. The error probability is kept at 4%. This gives a comprehensive view of the susceptibility of 
the application to the location of the errors in the bus. In most cases, errors in the least significant 
bits affect the operation of the program less significantly than those in the most significant bits. In 
addition, as the scope of error in the bus increases, the error in the computation might go beyond 
the tolerance of the application, leading it to terminate abruptly. To capture this behavior, we 
obtain two metrics – number of successful runs, and output quality (SNRseg for the audio, and 
PSNR for the image and video decoding applications). 

2) Error Rate: By analyzing the error susceptibility of the application from the prior metrics, we 
select an optimal range of the bits to allow errors on. This is done to ensure that the program 
completes successfully at each run. In this case, the error rate is varied to obtain the quality of the 
output (SNRseg or PSNR). This illustrates the behavior of the application with increasing hardware 
error rates. The metrics are obtained for errors injected not only in the entire application but also 
in individual functions to determine their tolerances. 
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4. Results and Analysis 

4.1 The Impact of Bit Selection on Successful Runs 

Fig 2 (a), (d), and (g) plots the number of successful runs (normalized to the error-free execution) 
for the test kernels. The graphs show the behavior of the entire application as well as when 
injecting errors only within major functions. In the case of G.721-D, every function runs 
successfully, even in the presence of errors. However, this is not the case for JPEG-D and H.263-D. 
For JPEG-D, the upsampling function crashes when the 10th least significant bit in the data bus is 
introduced to error; entropy decoding crashes when errors are injected at the 19th least significant 
bit. Similarly, for H.263-D, the motion compensation block is highly sensitive to errors and crashes 
even when errors are injected in the 2nd least significant bit. The Huffman decoding and 
reconstruction functions follow soon, crashing at the 12th and the 14th LSB respectively, while 
inverse DCT is error-resilient and causes crashes only after the 29th bit is flipped.  

4.2 The Impact of Bit Selection on Output Quality 

Fig 2 (b), (e), and (h) plots the decoding quality (SNRseg or PSNR) for the entire application and 
respective functions. In the case of JPEG-D and H.263-D, we see an anticipated behavior of decrease 
in the output quality as the higher significant bits are subjected to error. G.721-D shows a peculiar 
behavior in the fact that the SNRseg decreases up to bit 16 and then starts rising.  This anomaly is 
due to the fact that most of the computations are performed with short int (16 bits) data type. As 
we increase the scope of error beyond the 16bits, the individual probability of bitflips for the first 
16 bits decreases, thus reducing the effect on the computations. 

From the results discussed above, we select the range of 8 least significant bits (bit positions 0-
7) to be subjected to error for our preliminary analysis of the application behavior with respect to 
increasing error rates. This is done for two reasons – first errors in the first 8 bits do not affect the 
output quality significantly and keep it at acceptable levels (> 10dB SNRseg for G.721, > 25dB PSNR 
for JPEG, and > 30dB PSNR for H.263). Second, the programs run stably without crashing with 
errors in this region. 

Additionally, we observe that entropy decoding in JPEG-D and motion compensation in H.263-D 
reduce the output quality drastically when injected with errors. Thus, we choose to provide full 
accuracy to these functions to get a meaningful output. While graphing the behavior of the entire 
application (curve marked “All”), we exclude error injection in entropy decoding and motion 
compensation while the remaining application is subjected to the same error rate. 

4.3 The Impact of Error Rate on Output Quality 

Fig 2 (c), (f), and (i) plots the decoding output quality for each application with increasing error 
rate.  In the case of G.721-D, the quantization, step size and predictor functions are more error-
tolerant than the reconstruction function. For JPEG-D, upsampling and quantization show similar 
tolerance with entropy decoding having the lowest. Finally in the case of H.263-D, inverse DCT is 
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not affected by errors in the range of bit positions we consider, while motion compensation is 
highly sensitive.  

 
4.4 Power Savings 

As seen from the graphs in Fig 2 (c), (f), and (i), the maximum error rate for acceptable output 
quality is 7% for G.721-D (SNRreg > 10dB), 4% for JPEG-D (PSNR > 25dB) and 6% for H.263-D 
(PSNR > 30dB). This is for the case when the entire application is subjected to a uniform error rate. 
However, by adding variable fidelity levels to the different function routines, Elastic Fidelity 
Computing can withstand even lower accuracies (higher error rate) for the same output quality 
level. After determining the corresponding error levels for each major segment of each application, 
we estimate the power consumption by equating the percentage of dynamic instructions subjected 
to error [11] with the hardware error-power model presented in [19]. The power consumption is 
normalized to the power of the processor in error-free operation. 
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Table 2.     Estimation of Power Consumption 

Application 
@ error rate per function 

Instructions 
subjected to error 

Normalized processor 
power consumption 

G.721 audio decoding 
Quantization @10%, 0-15 bits; 
Step Size @10%, 0-7 bits; 
Predictors @10%, 0-7 bits; 
all else @4%, 0-7 bits 

80.7% 0.89 

JPEG image decoding  
Entropy @0%; 
Quantization @6%, 0-7 bits; 
Upsampling @5%, 0-7 bits; 
all else @4%; 0-7 bits 

70.5% 0.88 

H.263 video decoding  
Motion compensation @0%; 
IDCT @10%, 0-28 bits; 
all else @6%; 0-7 bits) 

64.2% 0.87 

 

From Table 2, it is evident that even without any modification to the program, and even when 
allowing only the ALUs to exhibit variable fidelity, Elastic Fidelity Computing lowers the power 
consumption of the processor by 11-13%. Because the execution time does not change for these 
applications when errors are injected in the corresponding functions, the power savings also 
correspond to energy savings. As our results are highly conservative, we envisage the power 
savings to be significantly higher once the application is written in a fidelity-aware approach with 
the necessary program constructs, and when more functional and storage units employ elastic 
fidelity (rather than only ALUs).  

5. Related Works 

There has been in depth research in modeling the behavior of hardware due to voltage scaling and 
process variability [7, 9, 28], along with techniques to prevent them [2, 5, 30]. New designs based 
on better-than-worst-case (BWTC) scenarios have been developed, which relax the design 
guardbands and perform error recovery when required. Designs such as Razor [8] perform error 
correction at the hardware through the use of additional circuitry, while [14] corrects the errors at 
the algorithmic level. The benefits of these techniques in the scope of power reduction are limited 
due to their error recovery overheads. Moreover, they are orthogonal to Elastic Fidelity and can be 
used synergistically with it to lower the power and energy consumption even further. In addition, 
there has been recent work in optimizing the most frequently exercised paths in hardware at the 
cost of timing errors in the infrequent ones [29]. Techniques like BlueShift [12] work on this 
principle and optimize the circuit for maximum operating frequency for a given error rate. 
However, these developments focus on error correction rather than error tolerance and none of 
them look into the idea of allowing the errors to propagate into the software. 

The most significant work related to Elastic Fidelity appears in a related project [19, 20, 21] 
which targets processor designs that keep voltage-reliability trade-offs in mind. This study 



12 
 

minimizes processor power for a given error rate. This differs from our work, as it deals with 
designing the underlying hardware, while we focus on the feasibility of software to take advantage 
of this phenomenon.    

On the software side, a considerable amount of research has been performed on the effect of 
single event upsets on software behavior [3, 16, 23, 25, 31] due to the rising  reliability issues 
resulting from decreasing feature size.  However, we find that not much has been done in the case 
of continued errors as presented in this report. Unlike single event upsets, these errors occur 
continuously due to faulty hardware (as a result of voltage over-scaling in this case.) 

Finally, research on empathic systems [32, 33] considers human perception and user satisfaction 
to guide power optimizations. Contrary to our work, empathic systems do not trade-off accuracy for 
power; rather, they trade-off user satisfaction for power. However, similarly to empathic systems, 
our output quality metrics for the applications we study in this research are also exploiting human 
perception to arrive at a result that is good enough, but not necessarily “perfect”. 

6. Conclusion 

We observe that not all computations and data in a workload need to maintain 100% fidelity. Our 
results indicate that some functions in an application are far more error resilient than others. 
Similarly, errors in certain portions of an application’s dataset may cause virtually no change in its 
operation, while errors in other portions may affect the final outcome significantly (e.g., errors in 
LSB vs. MSB bits respectively).  Elastic Fidelity Computing exploits the variable accuracy 
requirements within an application to vary the reliability of the underlying hardware according to 
the application needs at each point in time. Portions of the application that are error-sensitive 
execute at full reliability, while the ones that are error-tolerant run on variable accuracy to produce 
an acceptable result to the end user. In turn, the hardware can let go the conservative guardbands 
imposed on the design to guarantee reliable execution. Instead, hardware may operate at voltage 
levels low enough to induce errors, but high enough to maintain reasonable output quality. 

Our results indicate that Elastic Fidelity Computing can lower the power and energy 
consumption of workloads pertaining to human perception by 11-13%, while keeping their output 
quality within acceptable levels. Our results are very conservative, as we assume no modifications 
to the software, and we assume that only ALUs employ elastic fidelity. We anticipate that by 
incorporating error-aware design in software, and by extending elastic fidelity operation to more 
hardware components in a system, the power and energy savings would be significantly higher. 
Thus, by striking a balance between computational accuracy and supply voltage, and through 
software/hardware cooperation, Elastic Fidelity Computing shows promise in successfully tackling 
the ongoing power crisis in processor design. 
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