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future technology generations. We observe that customized heterogenous multicores can leverage die area
to overcome the initial power barrier, resulting in bandwidth constrained designs. Overcoming the
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ABSTRACT

As Moore’s Law continues for at least another decade, the number of cores on chip and the on-chip cache

size will continue to grow at an exponential rate. While workloads with limited parallelism pose

performance challenges with multicore processors, server workloads with abundant parallelism are

believed to be immune, capable of scaling to the parallelism available in the hardware. However, despite

the inherent scalability in threaded server workloads, increasing core counts cannot directly translate into

performance improvements because chips are physically constrained in power and off-chip bandwidth.

In this work, we explore the design space of physically-constrained multicore chips across technologies

and show that, even with conservative estimates, chips will not scale beyond a few tens of cores due to

physical power and off-chip bandwidth constraints, potentially leaving the die real-estate underutilized in

future technology generations. We observe that customized heterogenous multicores can leverage die area

to overcome the initial power barrier, resulting in bandwidth constrained designs. Overcoming the

bandwidth wall, e.g. through the use of large multi-gigabyte 3D-stacked caches, fully exposes multicore

designs to the power wall, requiring innovation in low-power interconnects and on-chip hierarchies to

further improve the performance of future servers.

1 INTRODUCTION

Shortcomings of existing architectures, along with the continued rise in the number of transistors available

on chip, have encouraged a switch to multicore (CMP) architectures. CMPs avoid an increase in core com-

plexity, and instead integrate multiple processors on a single die, relying on the parallelism exposed within

the workload. While the availability of parallelism in desktop and engineering applications is limited, there

is a general belief that server workloads, where parallelism is abundant [17], can scale by taking advantage

of the multicore hardware. Thus, vendors and researchers have pursued designs with high core counts,



maximizing the number of lean on-chip cores [24] and threads [26,29], with projections of growing to 100s

or 1000s of cores in the future [7,37].

However, multicores are not a panacea for server processor designs. While Moore’s Law enables more

transistors on chip [6], the static power consumption of the additional transistors can no longer be mitigated

through circuit-level techniques [11]. Although a trade-off exists between cache performance and leakage

power, the cache latency cannot be sufficiently reduced to deliver reasonable performance and simultane-

ously keep at bay the leakage power of exponentially growing caches. Additionally, the multiplying core

counts and thread contexts constitute a substantial fraction of the chip’s transistors, steadily raising both

static and dynamic core power consumption. While voltage-frequency scaling may lower the dynamic

power of the cores and enable more cores on chip, static power dissipation and performance requirements

impose a limit. Future multicore designs are therefore rapidly approaching the power wall.

Even if the power limitation can be temporarily elided through highly efficient core designs or low-opera-

tional-power transistors, the rising core and thread counts will drastically increase pressure on the limited

and non-scalable off-chip memory bandwidth, encountering the bandwidth wall [36]. Traditional

approaches to alleviate off-chip bandwidth pressure call for larger on-chip caches, which further drive up

the chip’s power consumption, reducing the power available to the cores. Thus, despite the abundant paral-

lelism present in server workloads, without a technological miracle, the number of cores in future CMPs

will be severely limited by the chip power envelope and the constrained off-chip bandwidth.

To understand the CMP characteristics necessary to attain peak performance while staying within the phys-

ical constraints of power and bandwidth, it is imperative to jointly optimize all design parameters. To date,

there has been no objective and comprehensive study that examines how multicore trends affect the perfor-

mance of server workloads. In this work, we consider a large array of design parameters and construct

detailed models which conform to ITRS projections of future manufacturing technologies. We jointly opti-

mize supply and threshold voltage, on-chip clock frequency, core count, manufacturing process, on-chip

cache size, and memory technology to draw the following conclusions for future multicore server trends:

• CMPs will not scale beyond a small number of cores. Power constraints force under-utilization of the

die area and require reduction in cache and core performance to reduce leakage power and meet the

power budget. Simultaneously, high thread counts and limited cache overload off-chip bandwidth. Cou-

pled with Amdahl’s law providing diminishing returns with each additional core, physically-con-
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strained designs having a large number of power- and bandwidth-limited cores are at best competitive

with designs having a smaller number of fast cores.

• The die real-estate can be effectively used by power-efficient customized heterogenous cores imple-

mented with low-operational-power transistors, with all but the most application-specific hardware dis-

abled. Specialized heterogenous designs can achieve peak bandwidth-bound performance with a small

number of cores of the highest possible single-thread performance, maximizing the power available for

large caches that reduce off-chip bandwidth pressure.

• Large multi-gigabyte 3D-stacked-DRAM caches can effectively overcome the bandwidth wall. 3D-

stacked caches allow higher performance through increased parallelism to all multicore designs, with

the largest gains available to heterogenous designs that become primarily limited by the workload par-

allelism.

The rest of this paper is organized as follows. Section 2 presents a forecast of the analysis. Our approach is

illustrated intuitively in Section 3. Section 4 evaluates a large and diverse CMP design space to determine

trends and projections of future server multicores. We summarize the related work in Section 5 and con-

clude in Section 6. Finally, Section 7 presents our analytical models and the empirical results for the valida-

tion of our workload-specific parameters.

2 ANALYSIS FORECAST

The desire for higher performance for server workloads suggests CMPs with high core counts. Yet, physi-

cal limitations restrict the number of cores that can be practically employed. We forecast that CMP designs

that balance the on-chip resources to obtain peak performance will employ only a modest amount of cores.

Increasing the core count will force the chip to run slower, so it can remain within the power and bandwidth

envelope, yielding a suboptimal design point.

In an attempt to break past the power wall, we analyze a range of techniques that minimize power con-

sumption, from voltage-frequency scaling, to using low-power or customized cores, to employing low-

operational-power transistors even for time-critical chip components. However, even with conservative

estimates and the utilization of all these techniques, we find that CMPs attaining peak performance will still

employ only a modest amount of cores. While these techniques lower power consumption and allow for

higher core counts, the increasing number of cores pushes CMPs against the bandwidth wall. We observe
4



that 3D-stacked DRAM caches effectively mitigate the off-chip bandwidth constraints, making power the

ultimate limiter to CMP scaling. With techniques to lower core power and chip leakage already under way,

large-scale multicores require innovation in light-weight on-chip interconnects and memory hierarchies.

3 METHODOLOGY

Complexity and run-time requirements make it impractical to rely on full-system simulation for a large-

scale design-space exploration study. Instead, we rely on first-order analytical models of the dominant

components. Our algorithm uses the analytical models as constraints, always finding the core count and

cache size of the peak-performing design. The details of our performance, power, area, and bandwidth

models are presented in Section 7.

We use the example in Figure 1 to illustrate our

algorithm for finding the peak-performing designs.

The “Area” curve in Figure 1 shows the area-con-

strained core vs cache tradeoff (farthest right

curve). The “Power” curve shows the same rela-

tionship, but bound only by the chip power budget

(lowest and left-most curve). Although potentially

hundreds of cores can fit into the available area,

only a handful of them can be powered.

Voltage scaling enables lowering the chip power consumption and permitting designs with more cores and

cache, albeit at lower performance because the frequency also decreases. The progressive curves between

the “Area” and “Power” curves show designs with varying voltages/frequency. For example, it is possible

to lower supply voltage to fully populate the chip area, as shown by the intersection of the “Area” and the

“1GHz/0.27V” curves; however, at 0.27V, the cores are restricted to 1GHz operation, while the technology

supports frequencies in excess of 10GHz. We further overlay the off-chip bandwidth constrained designs

on Figure 1, showing core vs cache ratios at the 1GHz and 2.7GHz off-chip bus frequency.

Although bandwidth limitations favor larger caches, power constraints favor smaller caches with lower

leakage power. More and faster cores translate into higher performance, but the power and bandwidth walls

favor fewer and slower cores. Therefore, selection of the highest performance design must balance conflict-
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ing requirements imposed by the physical constraints. The “Peak Performance” curve in Figure 1 shows the

progression of our algorithm. The algorithm walks along the most limiting physical constraint, exploring

slack of the other constraints to improve performance. In the example of Figure 1, power initially limits the

clock rate and voltage to 1GHz / 0.27V. The algorithm proceeds along the bandwidth limit until an 8MB

cache, where it switching to 2.7GHz bandwidth with fewer cores. At 32MB cache size, the power wall for

0.36V forces a lower voltage, allowing to power 88 instead of 32 cores. The rest of the candidate designs

are power constrained, with the highest performance design at the intersection of the power and bandwidth

limits for 2.7GHz / 0.36V.

To more intuitively show the progression of the

algorithm, we plot the same design points, replac-

ing core count with application performance on the

Y axis in Figure 2. The “Area” curve shows area-

constrained designs at maximum frequency,

assuming unlimited power and bandwidth. The

“Power” curve shows power-constrained designs

at maximum frequency, assuming unlimited area

and bandwidth. The “Area+Power” curve uses

voltage-frequency scaling (VFS), showing the highest-performing designs assuming unlimited bandwidth.

Finally, the “Bandwidth” curve shows VFS designs subject only to bandwidth constraints. The “Peak Per-

formance” design is shown as initially bounded by bandwidth, eventually reaching the “Area+Power” volt-

age-scaled power constraint at 32MB of cache.

3.1 Technology Model

We model multicore processors across four fabrication technologies: 65nm (in large-scale commercial pro-

duction since 2007), 45nm (to be used by the majority of new products by 2010), 32nm (due in 2013) and

20nm (due in 2017). For each technology node, we utilize parameters and projections from the Interna-

tional Technology Roadmap for Semiconductors (ITRS) 2008 Edition [6]. When scaling across technolo-

gies, we follow ITRS forecasts on new device types that are expected to replace devices that do not scale

beyond a given technology node. In agreement with ITRS, we model bulk planar CMOS for the 65nm and
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45nm nodes, ultra-thin-body fully-depleted MOSFETs for 32nm technology [16], and double-gate FinFETs

[38] for the 20nm node. Prototypes of these devices are under development at several industrial labs.

3.2 Hardware Model

We model CMPs with cores built in one of three ways: general purpose (GPP), embedded (EMB), or ideal

(Ideal-P). GPP cores are similar to the cores in Sun’s UltraSPARC [26,29]. We model 4-way multi-threaded

scalar in-order cores, as similar cores have been shown to optimize performance for server

workloads [15,17]. We calculate that a 4-way multi-threaded core achieves speedup of 1.7x over a single-

threaded core when running server workloads, corroborating prior research [17]. Because general-purpose

cores consume an inordinate amount of power and area compared to embedded cores, we also evaluate

cores similar to the ones in ARM11 MPCore [3,21]. Based on prior research, we conservatively estimate

that an EMB core delivers the same performance as a single-threaded GPP core [43,44] when running com-

mercial workloads.

To obtain an upper bound on core performance and power efficiency, we evaluate ideal cores (Ideal-P) that

have ASIC-like properties: Ideal-P cores deliver 7x the performance of a GPP core and consume 140x less

power [12]. The evaluation of Ideal-P cores is especially relevant to designs in the deep-nanometer regime,

where abundant die real-estate enables heterogenous CMPs with cores that are heavily optimized for differ-

ent functionality. A heterogeneous CMP may enable only the cores that most closely match the require-

ments of the available work, and use GPP cores only for non-critical or complex/uncommon parts of the

program, thereby exhibiting near-ASIC properties for most cores.

Each core is supported by 64KB L1 instruction and 64KB L1 data caches. The CMP employs a shared L2

cache ranging from 1MB to 512MB in size. We optimize each L2 cache configuration for each technology

node with CACTI 6.0 [33], and use the tool’s average access latency estimate in our models. CACTI 6.0

models the access time, cycle time, area, and power for a wide range of cache organizations (from small

conventional caches to large NUCA [25] caches), jointly optimizing the cache organization and aspect

ratio, the on-chip interconnect and the wire technology. Each NUCA slice is also independently optimized

and multi-banked for performance [10,33]. We do not evaluate deeper on-chip cache hierarchies because

prior research shows that a NUCA organization outperforms any multi-level cache design [25]. Relevant

CMP parameters are listed in Table 1 (a).
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4 ANALYSIS

4.1 Impact of Workload Parallelism on CMP Core Count

We analyze the impact of varying degrees of appli-

cation parallelism on the CMP core count by

employing our models to devise peak-performance

designs for three CMP configurations: two with

GPP cores and one with EMB cores. The details of

the CMP designs are explained in Section 4.2 and

Section 4.3. Figure 3 shows the core counts of the

resulting peak-performing designs. We observe

that over a wide range of application parallelism,

the core count of the peak-performing CMP designs remains within a narrow band for all except the 100%-

parallel workload. Thus, the core count of peak performing designs is largely independent of the parallel-

ism available in the workload, except for workloads with near-perfect parallelism (over 99.5%). Unless

otherwise noted, the remainder of our analysis assumes workloads with 99% parallelism.

4.2 Physically-Constrained Designs Across Technologies

To mitigate the power wall, some processors utilize high-Vth transistors for non-time-critical components

to lower the leakage current. Such low-operational-power (LOP) transistors achieve orders of magnitude

lower subthreshold leakage current, while retaining 54%-68% of the switching speed of high-performance

(HP) transistors [6]. Caches are a prime candidate for using LOP transistors, as their activity level is signif-

icantly lower than the cores’ and the high transistor density of caches results in high aggregate leakage.

To evaluate the impact of device-level power savings on CMP design, we run our models across technolo-

gies for CMPs with GPP cores that utilize (i) HP transistors for the entire chip, (ii) HP/LOP transistors for

the cores/cache respectively, and (iii) LOP transistors for the entire chip. A detailed description of the tran-

sistors we evaluate appears in [6]. We present the design-space exploration results in Figure 4, and the core

counts of peak-performing designs across technologies in Figure 5. In the interest of brevity, Figure 4

shows results only for OLTP at 20nm; the trends are the same across technologies and workloads.
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Because full-HP designs are severely power-limited across technologies (Figure 4, left), only a small num-

ber of cores can be powered. Although the die at 20nm can fit 180 cores, HP designs can power only

approximately 32 cores (Figure 5). Utilizing LOP transistors for the cache enables larger caches that can

support more cores and yield higher performance (Figure 4 and Figure 5, middle). At 20nm, HP/LOP

designs support approximately 64 cores, twice the HP core count, with approximately 20% of the chip

power dissipated due to leakage in the cores. 

Implementing cores with LOP transistors can eliminate core leakage, at the cost of per-core performance.

However, due to power constraints, the peak-performing HP designs must employ on-chip clocks at least

43% lower than the maximum frequency supported by the technology. Although LOP transistors are slower

than HP transistors, they retain 54%-68% of the maximum switching speed at an optimal clock rate. As

such, we find that LOP devices can be used to implement the cores as well as the cache, obtaining similar

CMP performance as HP/LOP designs (Figure 4, right) while achieving 25% higher performance per watt

As expected, workloads with less parallelism benefit from designs built with HP transistors rather than

LOP transistors. However, the crippling effect of the power wall limits the core count and clock frequency
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of HP designs. As a result, LOP designs with higher core counts outperform HP designs down to workloads

with only 30% available parallelism, at which point a 4-core 9GHz HP design offers a marginal absolute

performance benefit over a 24-core 6.7GHz LOP design. LOP designs are competitive with HP/LOP

designs up to 97% parallelism, at which point the higher core count of LOP designs overtakes the higher

per-core performance of HP/LOP designs, enabling LOP designs to exhibit greater absolute performance

and higher performance per watt. For the remainder of the paper we focus on LOP designs. 

4.3 Multicore Processors With milliWatt Cores

Lean cores deliver high performance when running commercial server workloads at reasonable power con-

sumption (e.g., Sun UltraSPARC T1 consumes less than 2W per thread [29]). However, embedded systems

are dominated by milliWatt cores that deliver reasonable performance at orders of magnitude lower power.

For example, the ARM1176JZ(F)-S consumes 279mW with an 8-stage, scalar, out-of-order pipeline,

dynamic branch prediction, separate Ld/St and arithmetic pipelines, a SIMD unit, and a vector floating-

point co-processor [4]. Prior research has indicated that simple in-order cores are preferable for commercial

server workloads [15,17]. These workloads typically exhibit tight data dependencies and adverse memory
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access and sharing patterns that are impervious to most architectural optimizations. Thus, simple efficient

cores present a viable building block for server multicores.

We find that EMB-based multicores generally exhibit trends similar to GPP-based multicores. The peak-

performing designs are bandwidth-constrained at small cache sizes, becoming power-constrained for larger

caches, with the highest performing designs at the intersection of the constraints (Figure 6). Both GPP and

EMB designs require similar-sized caches to remain within the bandwidth envelope.

However, to reach peak performance, EMB multi-

cores require double the core count compared to

GPP multicores (Figure 5 right and Figure 7 left).

Although additional cores deliver significantly

higher performance in today’s 65nm technology

(Figure 11), at smaller technologies with higher

core counts, additional cores provide a marginal

performance benefit due to Amdahl’s Law. While

the best 20nm EMB design allows for 176 cores

compared to 88 GPP cores, the EMB design trails

13% in absolute performance with a 99% parallel workload, achieving a speedup over GPP designs only

with 99.6% or higher workload parallelism. Furthermore, higher core counts require larger interconnects,

dissipating 68% more power than the interconnect of the GPP design (Figure 8). The EMB performance

per watt is therefore similar to GPP designs, with power efficiency of EMB cores outweighed by the power

consumption of the interconnect. We evaluated multi-threaded EMB cores, but due to the increased power

and bandwidth requirements, we observe minimal differences compared to EMB designs

4.4 Multicore Processors with Ideal Cores

Amdahl’s Law prohibits large core counts from delivering high aggregate performance (except for embar-

rassingly parallel applications). An alternative design is to deliver higher performance with fewer cores.

We evaluate an extreme application of this approach by considering heterogeneous computing, where a

multicore chip may contain hundreds of diverse powered down cores, enabling only those cores that are

most useful to a given application’s performance. Low core count reduces the impact of Amdahl’s Law,
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while matching of specialized cores to an application’s requirements enables high performance at high

power efficiency.

We explore heterogeneous designs by evaluating multicores built with Ideal-P cores exhibiting ASIC-like

properties: Ideal-P cores deliver 7x performance of a single-threaded GPP core at 1/140th the power.

Although it remains questionable whether cores may ever achieve these goals, the inclusion of reconfigu-

rable logic and spatial computing [12] may approximate these assumptions in some cases. Thus, we con-

sider our analysis a first step towards a feasibility study, rather than an accurate performance estimator.

Superior power and performance characteristics of Ideal-P cores push the power envelope much further

than possible with other core designs (Figure 6). As a result, Ideal-P multicores attain roughly 2x speedup

over the GPP and EMB designs. Unlike GPP and EMB designs that are ultimately power-limited, Ideal-P

designs are primarily constrained by off-chip bandwidth. Bandwidth constraints force Ideal-P designs to

hundreds of megabytes of cache, dominating the power budget with cache leakage.

Superior single-core performance of Ideal-P, along with the limitations imposed by Amdahl’s Law on mas-

sive parallelism, allows small-scale CMPs to achieve higher performance than GPP or EMB-based designs

with four times more cores. Although almost a thousand cores can fit in a 20nm chip, the optimal (band-

width-limited) Ideal-P designs are at 16 to 32 cores, with remaining die area used for reducing off-chip

bandwidth requirements through a larger on-chip cache. The observation of low core-count Ideal-P designs

exhibiting peak performance is especially true for workloads with smaller fractions of parallelism, and

holds up to 99.9% parallelism for the workloads we studied.

4.5 Effect of Multi-Gigabyte On-Chip Caches

Advances in fabrication technology have resulted in techniques that enable stacking multiple chip sub-

strates on top of each other [32]. Communication between the substrates is performed through vertical

buses which can deliver terabytes per second of bandwidth [32]. Although stacking multiple processor

chips may have prohibitive thermal implications, stacking memory on top of processing cores results only

in a small increase in temperature (10oC for 9 additional layers [32]) while offering unprecedented band-

width to the memory arrays. The resulting 3D-stacked memory can be used as a large “in-package” cache,

that can ease the burden imposed by the high core counts on the off-chip pins. 
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The designs considered in previous sections are limited by bandwidth and power, two interrelated con-

straints. Bandwidth considerations result in designs with large caches, which limit power available to add

more cores or to allow for faster cores. We evaluate 3D-stacked CMP designs across technologies, where

the stacked memory is used as a cache and present our results in Figure 9 and Figure 10. We find that 3D-

stacked memory pushes the bandwidth constraint beyond the power constraint in most cases (Figure 9).

This leads to peak-performance designs that are only power-constrained and achieve higher performance

than their conventional-memory counterparts. Figure 11 shows the speedup of each design, with and with-

out a 3D-stacked cache, averaged over all our workloads.

Although 3D-memory delivers a modest performance improvement in GPP or EMB multicore processors

(less than 35%), reduction in off-chip bandwidth requirements results in almost 2x speedup when used with

Ideal-P cores. Figure 12 shows the relationship of available parallelism and the average Ideal-P core count

of peak performance designs across our workloads. A 3D-stacked cache eliminates the bandwidth wall,

enabling a small on-die cache to realize high performance; in the case of perfectly scalable (100% parallel-

ism) applications, only 16MB of cache is needed, with the majority of the die populated by cores. However,

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64 128 256 512

1
0

00
 x

 M
IP

S

Cache Size (MB)

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64 128 256 512

1
0

00
 x

 M
IP

S

Cache Size (MB)

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

Area (Max Freq.)

Power (Max Freq.)

Bandwidth (VFS)

Area+Power (VFS)

Peak Performance

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32 64 128 256 512

1
00

0
 x

 M
IP

S

Cache Size (MB)

Ideal (Ideal-P)Embedded (EMB)General Purpose (GPP)

FIGURE 9: GPP, EMB and Ideal-P CMPs using LOP transistors and 3D-memory at 20nm (OLTP).
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Amdahl’s Law results in diminishing returns from high core counts, favoring fewer cores and larger caches

for peak-performance designs at lower available parallelism.

With all core designs we evaluate, the use of a

large 3D-stacked memory alleviates the off-chip

bandwidth wall for most memory accesses, allow-

ing for more cores on chip compared to band-

width-limited designs (about two to three times

more cores at 20nm—Figure 10). We observe that

the higher core counts in these designs result in

CMPs where the network subsystem dominates

chip power (Figure 8) and becomes the new bottle-

neck.

5 RELATED WORK

Hartstein et al. [19] evaluate the nature of cache

misses for a variety of workloads and validate the

square-root rule-of-thumb for cache misses. Rog-

ers et al. [36] extend this work to CMPs and con-

clude that miss rates follow a simple power law. In

this work, through robust fitting of hundreds of

candidate functions, we find that x-shifted power

laws accurately describe the cache miss behavior

of commercial server workloads, while simpler

power laws may generate relative errors in excess of 50%. Hill and Marty [20] analytically explore how

different levels of software parallelism and core asymmetry affect the performance of multicore processors,

while our model focuses on the trade-offs between physical constraints and performance.

Rogers et al. [36] model the effect of die area allocation to cores and caches on the on-chip memory traffic

in current and future technology generations to conclude that bandwidth is the primary performance con-

straint. However, Rogers et al. do not consider power implications on performance and leverage the

assumption that modern multicores are already bandwidth constrained, which contradicts prior research
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[9]. We agree with the observation that 3D-stacked memory does not alleviate the bandwidth wall when a

single stacked layer is considered, but we find that the addition of multiple layers of dense DRAM

arrays [32] effectively mitigates the bandwidth wall for all designs across technologies.

[15] explored the design space of CMPs, focusing on throughput as the primary performance metric to

compare server workload performance across chip multiprocessors with varying processor granularity.

However, this study stops short of a detailed performance characterization and breakdown of where time is

spent during execution. Similarly, Huh et al. [23] explore the design space of CMPs to determine the best

configuration and extrapolate SPEC CPU results to server workloads, but do not consider the power impli-

cations of CMP designs, focusing the study on smaller systems where bandwidth and power are less criti-

cal. Moreover, the performance model in [23] employs private L2 caches per core, which greatly increase

the data sharing overhead and off-chip miss rate.

Li et al. [31] present a comprehensive study of the CMP design space subject to physical constraints and

jointly optimize across a large number of design parameters. However, they investigate only SPEC CPU

benchmarks and a single technology node (65nm), while we focus on commercial server workloads across

technologies. Moreover, [31] assumes that cache latency remains constant when scaling the cache size,

which does not allow for an accurate exploration of a wide range of cache sizes. 

Alameldeen [2] studies how compression improves processor performance, and develops an analytic model

to balance cores, caches, and communication. In contrast, we explore how physical constraints determine

the configuration of CMPs across technologies and evaluate different devices, core technologies, and mem-

ory technologies to extend the constraints. Kumar et al. [27] present a performance evaluation of a hetero-

geneous CMP, but focus on a CPU-intensive diverse workload rather than a homogeneous commercial

server workloads targeted by our study.

6 CONCLUSIONS

As Moore’s Law continues for at least another decade, the number of cores on chip and the on-chip cache

size will continue to grow at an exponential rate. Although server workloads have abundant parallelism,

they are not capable of scaling to the parallelism available in the hardware because increasing core counts

cannot directly translate into performance improvements, as chips are physically constrained in power,

bandwidth, and area.
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In this work, we developed models to explore the design space of physically-constrained CMPs across

technologies. Through this analysis, we showed that CMPs will not scale beyond a few tens of cores due to

physical power and off-chip bandwidth constraints, potentially leaving the die real-estate underutilized in

future technology generations. We evaluated embedded and ASIC-like cores, and found that scalability

using embedded cores is limited, particularly in future fabrication technologies, while heterogeneous mul-

ticores and voltage and frequency scaling can leverage die area to overcome the initial power barrier. We

observed that 3D-stacked caches can mitigate the bandwidth wall, resulting in power-constrained designs,

requiring innovation in low-power interconnects and on-chip hierarchies to further improve the perfor-

mance of future servers.

7 FIRST-ORDER ANALYTICAL MODEL

As Moore’s Law continues and the number of transistors on chip rises exponentially, there is sufficient die

real-estate to fabricate large-scale CMPs with hundreds of cores. Under ideal conditions, such CMPs are

able to execute several billion instructions per second. Unfortunately, this massive processing capability is

throttled by the latency gap between the memory subsystem and the processor. For many commercial

server applications, only a fraction of the peak performance can be achieved [1,9,15,17]. Growing the on-

chip cache allows for more data to be serviced from the faster cache rather than the slower main memory,

but cache and cores compete for die area. At the same time, power and thermal considerations limit the

number of cores that can run concurrently, while leakage current limits the amount of cache that can be

employed. Although scaling the supply voltage allows for lower overall power consumption, it does so

only at the expense of performance. Concurrently, memory bandwidth constraints impede the ability to

feed all cores with data, raising yet another wall that CMP designs must take into account [36].

In this work, we use construct first-order models relating the effects of technology-driven physical con-

straints to the application performance of commercial workloads running on future CMPs. The goal of this

effort is not to provide absolute values on how many cores or how much cache a CMP should have. Rather,

our intent is to uncover trends in future CMP designs.

7.1 Area Model

We model 310 mm2 dies [6] and proportionally scale the cores and cache area [15], allocating 72% of the

die for cores and cache, with the remaining area allocated to the on-chip interconnect, memory controllers,
16



and system-on-chip components. We estimate the core area by scaling existing designs. For GPP cores, we

scale the cores of the Sun UltraSPARC T1 processor [29], using 13.67 mm2 per core (including L1 caches)

in a 65nm node. For EMB cores, we scale the ARM11 MPCore, using 2.48 mm2 at 65nm. We estimate the

area of Ideal-P cores to be equal to EMB cores. We estimate the area required for the L2 cache by calculat-

ing the area of ECC-protected tag and data arrays following ITRS projections. Finally, we scale the cores

and caches across technologies in accordance to ITRS guidelines on transistor size, logic and SRAM den-

sity, area efficiency, and SRAM cell area factor for each technology.

7.2 Performance Model

It is important to consider Amdahl’s Law when investigating massive parallelism, as even a small serial

portion can severely limit the speedup obtained by employing more cores. For each CMP configuration,

workload, and process technology, we calculate the performance of the CMP using Amdahl’s Law. We

model applications with parallelism ranging between 80-100%. For example, a 99% parallelizable applica-

tion on 128 cores yields a speedup of 56x, while on 1024 cores it achieves only 91x (an order of magnitude

less than linear speedup). Even at 99.9% parallelism, 1024 cores barely reach 507x speedup.

We estimate the performance of a single core by calculating the aggregate number of user instructions com-

mitted per cycle (IPC), as this metric is proportional to overall system throughput [41]. To make compari-

sons across different cores, we consider the relative performance between GPP, EMB and Ideal-P cores

presented in Section 3.2. We estimate IPC by calculating the expected number of cycles an instruction

needs to execute, accounting for the probability this instruction accesses the L2 cache or main memory

(typically, the L1 hit latency is not exposed to the application). The probability that an instruction accesses

the L2 cache (hit or miss) is proportional to the fraction of dynamic load/store instructions in the applica-

tion and the L1 miss rate. Because both the fraction of load/store instructions and the L1 miss rate are char-

acteristic of the application and do not depend on the CMP configuration, we empirically measure them for

each application using the FLEXUS [18,41] full system simulator. Table 1 (a) and (b) presents the CMP sys-

tem and application parameters used in the simulations.

To calculate the cycles per instruction spent on L2 and memory accesses, we estimate the L2 access latency

using CACTI 6.0, and calculate the memory access latency by scaling DRAM latencies by 7% each year,

starting with a DRAM latency of 53ns in 2007 at the 65nm node (e.g., PC-667). For the calculation of the
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memory latency, we model an on-chip memory controller with a 2-cycle latency, with the DRAM modules

located on the board about 5-20cm from the processor chip.

7.3 L2 Cache Miss Rate and Dataset Evolution Models

7.3.1 L2 Cache Miss Rate Model

We use a combination of modeling and full-system simulation to estimate the L2 cache miss rate. We sim-

ulate and measure each workload’s miss rate as a function of the L2 size, varying the L2 size from 256KB

to 64MB at coarse steps. We then curve-fit [42] the miss rate measurements to find a function that best

approximates the measured miss rates. Using an automated system, we evaluated over 900 functions with

at most three coefficients to control smoothness and over-fitting. The functions included polynomials, log-

arithmic functions, exponentials, hyperbolas, x- and y-shifted power laws, reciprocal functions, and func-

tions prominent in the scientific literature (e.g., Weibull, Steinhart-Hart). The parameters of each function

are individually fitted to provide the lowest sum of absolute values of relative errors. The function that most

accurately predicts the cache miss rates for our workloads is an x-shifted power law: 

where y is the target miss rate, x is the size of the cache in MB, and α, β, γ are the fitted parameters.

The fitted parameters for each workload are

shown in Table 2, along with the average and

maximum errors of the fitted function. The aver-

age error of the x-shifted power law is less than

1.3% across our workloads, with a maximum error

of 8.2%. In contrast, a power law of the form y =

αxγ, used in prior studies to model miss rates [36], fails to capture accurately the miss rate characteristics of

commercial server workloads as it attains average errors of 11% for Apache and 6.4% for OLTP, with max-

CMP cores 16 cores, in-order; UltraSPARC III ISA
4-way fine-grain multithreading

L1 Caches split I/D, 64KB 2-way set-associative
64-byte blocks, 16-entry victim buffer

L2 Cache 1-512MB, 16-way set-associative, 64-byte blocks

Interconnect 2D-Torus

Table 1: (a) CMP parameters. (b) Workload parameters

OLTP – Online Transaction Processing

OLTP TPC-C v3.0 on IBM DB2 v8 ESE,
100 warehouses (10 GB), 64 clients, 2 GB buffer pool

Web Server

Apache SPECweb99 on Apache HTTP Server v2.0.
16K connections, fastCGI, worker threading model

DSS – Decision Support Systems

DSS
TPC-H Throughput Test on IBM DB2 v8 ESE,

480 MB buffer pool, 1GB database,
16 clients, Queries 2,6,13,16

 )(  xy

X-Shifted Power Law: y = α (x + β) γ

α β γ mean error max error

OLTP 0.5785 0.4750 -0.589 1.3% 8.2%

DSS 0.5925 0.5154 -0.327 0.5% 6.5%

Apache 1.0081 2.1104 -0.503 1.2% 4.9%

Table 2: Miss Rate Model Parameters.
18



imum errors of 58% and 23.6% respectively. It is worth noting that the commonly-used rule-of-thumb that

quadrupling the cache size halves the miss rate is subsumed by the traditional power law. Although the

rule-of-thumb is among the most accurate functions with one coefficient, the additional degrees of freedom

offered by the x-shifted power law allow a more accurate estimate of the miss rate.

7.3.2 Dataset-Adjusted Cache Miss Rate Model

Just as fabrication technology advances over time, the application datasets experience exponential growth.

Therefore, predicting a workload’s cache miss rate across technologies requires to consider the evolution of

the application datasets. We estimate the growth of application datasets for commercial server workloads

by measuring the dataset growth of Transactional Processing Council’s TPC-A, -B, -C, and -E workloads

since 1994 [14]. These workloads are updated regularly to represent the computational demands of online

transactional processing and data warehousing in large-scale database management systems. Our measure-

ments indicate that TPC benchmark datasets grow by 29.13% per year, corroborating Myhrvold’s Law

[28]. Based on the projected evolution of datasets, we adjust our cache miss rate models by lowering the

cache’s effective size by the expected growth of the application’s dataset for each technology node.

7.4 Power Model

The reference cores used for power estimates are the same as those used for the area model (Section 3.2).

The total chip power is the sum of the dynamic and static power of the individual components (cores,

cache, interconnect, I/O, and the miscellaneous system-on-chip components). The maximum allowable

power for air-cooled chips with heatsink is estimated for each technology by ITRS.

7.4.1 Dynamic Power

We obtain the core dynamic power consumption by scaling the dynamic power of the reference core pro-

portionally to the gate capacitance of the target technology, the target frequency, and the square of the sup-

ply voltage. We estimate the power for various levels of supply voltage ranging from the nominal voltage

defined by ITRS for each technology, down to 2.3x [5] the threshold voltage for the same technology. This

allows us to model the effects of voltage-frequency scaling, trading off clock frequency for lower power.

We account for the non-linear relationship between supply voltage and frequency by fitting published data

[13]. The voltage scaling is quantized in steps of 10% reduction over the nominal voltage.
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We estimate the L2 dynamic power by scaling published data for the UltraSPARC T1 cache [29]. In addi-

tion to scaling the cache power across technologies in a fashion similar to the core dynamic power, we

adjust the cache power proportionally to the cache activity (access rate). We calculate the activity factor

from the relative L1 miss rates for our designs and workloads, the number of cores on chip, and the relative

performance of the cores. We compute the network dynamic power based on network activity, scaled over

the same reference design. The activity of the network is equal to the activity of the cache, adjusted by the

average hop count of each message on a 2D-torus on-chip interconnect.

We calculate the power of the I/O subsystem proportionally to the reference GPP core design, the L2 access

rate by all participating cores, and the L2 miss rate, and we scale it across technologies similarly to cores.

Because bandwidth is limited, the worst case power is expended when all I/O pins are fully utilized. To

account for this limitation, we cap the bandwidth to the maximum allowed by the packaging process and

I/O technology, as predicted by ITRS. We model the power consumption of system-on-chip components

similarly to the active power of the core, scaling the reference design power across technologies.

7.4.2 Static Power

We model only the sub-threshold leakage and ignore the gate and junction leakage based on the results of

prior research [35]. The static power of the cache is proportional to its size, the supply voltage, the transis-

tor width, and the leakage current at the corresponding temperature. We estimate an average ratio of gate

length to gate width of 3.0 across technologies [6] and obtain gate lengths from ITRS. We scale the leakage

current for different temperatures similar to [22,30], fitting the sub-threshold coefficient for a target tem-

perature, calculating the thermal voltage from Boltzmann’s constant and the electron’s electrical charge,

and fitting data for the threshold voltage temperature coefficient. We calculate leakage at 66C, a typical

operating temperature of today’s CMPs [29].

We therefore core leakage as part of the chip power model. We calculate the leakage of the cores by esti-

mating the number of transistors in a core using ITRS logic transistor density projections, assuming that, on

any given cycle, one half of the core bits remain unchanged.

7.5 Off-Chip Bandwidth and 3D-Die Stacking Models

We model the chip bandwidth requirements by estimating the relative off-chip activity rate, scaled from the

off-chip activity rate measured in simulation of the application on the reference GPP design. The off-chip
20



bandwidth is proportional to the L2 miss rate, the number of cores, and the activity of the cores (i.e., clock

frequency and their relative performance).

In addition to evaluating a conventional memory system, we evaluate CMPs that use 3D-stacked memory

[32] as a high-capacity high-bandwidth L3 cache. We model a 3D-stacked memory where each layer has a

capacity of 8Gbits at 45nm technology [32]. The worst-case power consumption for each 8Gbit layer is

3.7W [32]. We model 8 layers, for a total of 8GB, with an additional layer used to host controllers and

logic. The 9 stacked layers increase the average temperature of the chip by an estimated 10C [32]. Thus,

when we evaluate 3D-stacked designs, we account for the effects of the increased temperature on power.

Communication from the cores/cache layer to the 3D-stacked memory is performed through vertical buses.

Stacking of memory layers above logic enables single-cycle vertical communication to the memory die by

traversing a small number of layers a few microns thick. We estimate the area for a 1Kbit vertical bus at

45nm at 0.32 mm2 [32], and model 8 such buses in our designs for a total of 2.56mm2 area. 

We treat 3D-stacked memory as a large L3 cache because the memory it houses is not sufficient for a full

large-scale server software installation. When using a 3D-stacked cache, our models include two memory

subsystems: one that extends from the L2 cache to the 3D-stack, and one that extends from the 3D-stack to

the memory modules on board. For the 3D-stack on chip, we estimate that memory access time improves

an additional 32.5% due to more efficient communication between the cores and the memory in the

3D-stack [32]. We model the miss rate of the 3D-stack using the same x-shifted power law as for the L2.
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