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ABSTRACT 

On-chip interconnection networks already consume a large fraction of the chip’s power, and the rapidly 

increasing core counts in future technologies further aggravate the problem. The interconnect facilitates 

the active sharing of data on chip. However, a large fraction of the traffic originates not from data 

messages exchanged between sharing cores, but from the communication between the cores and 

intermediate hardware structures (i.e., directories) for the purpose of maintaining data coherence in the 

presence of conflicting updates. We observe that the majority of such traffic is unnecessary, and stems 

from the uncoordinated and data-access-oblivious placement of the directory structures on chip. In this 

paper, we propose Power-Aware Directory Placement (PAD), a novel distributed cache architecture that 

co-locates directories together with highly active sharers of the corresponding data, thereby eliminating a 

large fraction of the on-chip interconnect traversals. Through trace-driven and cycle-accurate simulation 

in a range of scientific and Map-Reduce applications, we show that PAD reduces the power and energy 

expended by the on-chip interconnect by up to 37% (16.4% on average) with negligible hardware 

overhead and a small improvement in performance (1.4% on average). 

1. INTRODUCTION 

Advances in process technology enable exponentially more cores on a single die with each new 

process generation, leading to a commensurate increase in cache sizes to supply all these cores with data. 

To combat the increasing on-chip wire delays as the core counts and cache sizes grow, future multicore 

architectures become distributed: the last-level on-chip cache (LLC) is divided into multiple cache slices, 

which are distributed across the die area along with the cores [11, 34]. To facilitate data transfers and 

communication among the cores, such processors employ elaborate on-chip interconnection networks. 

The on-chip interconnection networks are typically optimized to deliver high bandwidth and low latency. 

However, such on-chip interconnects come at a steep cost. Recent studies show that on-chip networks 

consume between 20% to 36% of the power of a multicore chip [16, 19]and significantly raise the chip 

temperature [25] leading to hot spots, thermal emergencies, and degraded performance. As core counts 

continue to scale, the impact of the on-chip interconnect is expected to grow even higher in the future. 

The flurry of recent research to minimize the power consumption of on-chip interconnects is indicative 

of the importance of the problem. Circuit-level techniques to improve the power efficiency of the link 



circuitry and the router microarchitecture [29], dynamic voltage scaling [23] and power management [16, 

24], and thermal-aware routing [25] promise to offer a respite, at the cost of extensive re-engineering of 

the interconnect circuitry and routing protocols. Yet, prior works miss one crucial observation: a large 

fraction of the on-chip interconnect traffic stems from packets sent to enforce data coherence, rather than 

from packets absolutely required to facilitate data sharing. 

The coherence requirement is a consequence of performance optimizations for on-chip data. To allow 

for fast data accesses, the distributed cache slices are typically treated as private caches to the nearby 

cores [4, 5, 34], forming tiles with a core and a cache slice in each tile [2, 11]. Private caches allow the 

replication of shared data, which, in turn, require a mechanism to keep the data coherent in the presence 

of updates. To allow scaling to high core counts and facilitate coherent data sharing, modern multicores 

employ a directory structure, which is typically address-interleaved among the tiles [4, 11, 34]. 

However, address interleaving is oblivious to the data access and sharing patterns; it is often the case 

that a cache block maps to a directory in a tile physically located far away from the accessing cores. To 

share a cache block, the sharing cores need to traverse the on-chip interconnect multiple times to 

communicate with the directory, instead of communicating directly between them. These unnecessary 

network traversals increase traffic, consume power, and raise the operational temperature with detrimental 

consequences. Ideally, from a power-optimization standpoint, the directory entry for a cache block would 

be co-located with the most active sharing core of the block, rather than a seemingly random one. 

In this paper, we observe that a large fraction of the on-chip interconnect traffic stems from the data-

access-oblivious placement of directory entries. Based on this observation, we propose a distributed cache 

architecture that cooperates with the operating system to place directory entries close to the most active 

requestors of the corresponding cache blocks, eliminating unnecessary network traversals and conserving 

energy and power. The mechanisms we propose exploit already existing hardware and operating system 

structures and events, have negligible overhead, they are easy and practical to implement, and can even 

slightly improve performance. In summary, the contributions of this paper are: 

1. We observe that a large fraction of the on-chip interconnect traffic stems from the data-access-

oblivious placement of directory entries. 



2. We propose Power-Aware Directory placement (PAD), a mechanism to co-locate directory 

entries with the most active requestors of the corresponding cache blocks, eliminating 

unnecessary network traversals and conserving energy and power. 

3. Through trace-driven and cycle-accurate simulation of large scale multicore processors 

running a range of scientific (including SPLASH-2 [31]) and Map-Reduce [20] workloads, we 

show that PAD reduces the interconnect energy and power by up to 37% (22% on average for 

the scientific workloads and 8% on average for Map-Reduce) with a 1.4%performance 

improvement on average. 

The rest of the paper is organized as follows. Section 2 presents related work. Section 3 provides 

background information on distributed caches. Section 4 introduces Power-Aware Directory co-location 

(PAD), followed by the details of the proposed architecture in Section 5. The results of our evaluation are 

presented in Section 6. Finally, we conclude the paper with a short summary in Section 7. 

2. RELATED WORK 

To mitigate the access latency of large on-chip caches, Kim et al. propose Non-Uniform Cache 

Architectures (NUCA) [15], showing that a network of cache banks can be used to reduce average access 

latency. NUCA caches and directory management in chip multiprocessors (CMPs) have been explored by 

several researchers in the past. We classify some of the most notable works in the following areas: 

Cache block placement: To improve cache performance, Dynamic NUCA [15] attracts cache blocks 

to the requesting cores, but requires complex lookup algorithms. CMP-NuRAPID [7] decouples the 

physical placement of a cache block from the cache’s logical organization to allow the migration and 

replication of blocks in a NUCA design, but requires expensive hardware pointers for lookup, and 

coherence protocol modifications. Cooperative Caching [5] proposes the statistical allocation of cache 

blocks in the local cache to strike a balance between capacity and access speed, but requires centralized 

structures that do not scale, and the allocation bias is statically defined by the user for each workload. 

ASR [4] allows the allocation bias to adapt to workload behavior, but requires complex hardware tables 

and protocol modifications. R-NUCA [11] avoids cache block migration in favor of intelligent block 

placement, but distributes shared data across the entire die. Huh advocates NUCA organizations with 



static block-mapping and a small sharing degree [12], but the mapping is based on the block’s address and 

is oblivious to the data access pattern. Kandemir proposes migration algorithms for the placement of 

cache blocks [14] and Ricci proposes smart lookup mechanisms for migrating blocks in NUCA caches 

using Bloom filters [21]. PDAS [32] and SP-NUCA [18] propose coarse-grain approaches of splitting the 

cache into private and shared slices. However, none of these works optimize for power and energy. 

Nahalal [10] builds separate shared and private regions of the cache, but the block placement in the shared 

cache is statically determined by the block’s address. Finally, Page-NUCA [6] dynamically migrates data 

pages to different nodes whenever the system deems it necessary, but requires hundreds of KB to MB of 

extra storage which scales linearly to the number of cores and cache banks, and complicated hardware 

mechanisms and protocols. Overall, all these schemes place data blocks and optimize for performance; 

PAD places directories and optimizes for power and energy. Thus, PAD is orthogonal to them and can be 

used synergistically. Moreover, PAD does not require complex protocols or hardware. 

Software-driven schemes: OS-driven cache placement has been studied in a number of contexts. 

Sherwood proposes to guide cache placement in software [26], suggesting the use of the TLB to map 

addresses to cache regions. Tam uses similar techniques to reduce destructive interference for multi-

programmed workloads [27]. Cho advocates the use of the OS to control partitioning and cache placement 

in a shared NUCA cache [13]. PAD leverages these works to guide the placement of directories using OS 

mechanisms, but, unlike prior proposals, places directories orthogonally to the placement of data. 

Coherenceschemes: Several proposals suggest novel coherence mechanisms to increase the cache 

performance. Dico-CMP [22] extends the cache tags to keep sharer information. Zebchuk proposes a 

bloom-filter mechanism for maintaining tagless cache coherency [33]. These proposals are orthogonal to 

PAD,which co-locates the directory with a sharer, as opposed to changing the cache coherence protocol.  

Distributed shared memory (DSM) optimizations: Zhang observes that different classes of accesses 

benefit from either a private or shared system organization [35] in multi-chip multiprocessors. Reactive 

NUMA [9] dynamically switches between private and shared cache organizations at page granularity. 

Marchetti proposes first-touch page placement to reduce the cost of cache fills in DSM systems [36]. 



Overall, these techniques optimize performance in DSM systems. In contrast, PAD introduces a 

mechanism that decouples a block’s address from its directory location, allowing the directory to be 

placed anywhere on chip, without space or performance overhead, and without complicating lookup. PAD 

uses this mechanism to minimize power and energy in CMPs. Finally, the first-touch directory placement 

policy is only used because it is simple and effective, and is orthogonal to the PAD mechanism. 

On-chip power: Several studies optimize power for on-chip interconnects. Balfour optimizes router 

concentration for higher energy efficiency [3]. Wang proposes circuit-level techniques to improve the 

power efficiency of the link circuitry and the router microarchitecture [29]. Shang proposes dynamic 

voltage and frequency scaling of interconnection links [23], dynamic power management [24], and 

thermal-aware routing [25] to lower the power and thermal envelope of on-chip interconnects. All these 

techniques are orthogonal to PAD, which focuses on reducing the overall hop count and number of 

network messages by changing the directory placement. PAD can work synergistically with prior 

proposals to lower power and enhance the energy efficiency even further. 

3. BACKGROUND 

We assume a tiled multicore, where each tile consists of a processing core, a private split I/D first-

level cache (L1), a slice of the second-level cache (L2), and a slice of the distributed directory. Figure 1 

depicts a typical tiled multicore architecture. We assume a private NUCA organization of the distributed 

L2 cache [11], where each L2 slice is treated as a private L2 cache to the local core within the tile. 

On-chip distributed caches in tiled multicores typically use a directory-based mechanism to maintain 

coherence [4, 11, 34]. To scale to high core counts, the directory is also distributed among the tiles in an 

address-interleaved fashion (i.e., the address of a block modulo the number of tiles determines the 

directory location for this block). In the ideal case, the directory has the capacity to hold coherence 

information for all the cache blocks across all the tiles in all cases (i.e., a full-map directory). Techniques 

like sparse directories reduce the capacity requirements of full-map ones. However, the investigation of 

directory capacity-management mechanisms is beyond the scope of this paper. Without loss of generality, 

and similarly to most relevant works, we assume a full-map directory for the baseline and PAD 

architectures. In general, PAD uses the same directory mechanisms as the baseline architecture. 



 

Figure 1.Baseline tiled architecture of a 16-core CMP. Each tile has core, split I/D L1, L2 and directory slice. 

Address interleaving does not require a lookup to extract the directory location; all nodes can 

independently calculate it using only the address of the requested block. However, address-interleaved 

placement statically distributes the directories without regards to the location of the accessing cores 

leading to unnecessary on-chip interconnect traversals. Figure 2-a shows an example of the drawbacks of 

static address-interleaved directory placement. Tile 7 requests a data block, currently owned by Tile 1, 

with its directory entry located at Tile 5 as determined by address interleaving. To access the block, Tile 7 

first has to access the directory at Tile 5, which forwards the request to the owner Tile 1, which then sends 

the data to Tile 7. As the directory placement is oblivious to the location of the sharing cores, most on-

chip data transfers will require similar 3-hop messages. Ideally, the directory would be co-located with 

the sharer at Tile 1 (Figure 2-b), which would eliminate two unnecessary network messages and result in 

reduced power consumption and faster data access. Such placement is the goal of PAD. 

A similar message sequence is generated upon requests than result in off-chip misses. In such a case, 

even if the accessed data are private, the requesting core first contacts the corresponding directory, which 

then sends a message to the memory controller. When the data is available, the memory controller sends a 

message to the directory node and the data to the requestor. If the directory is co-located with the 

requesting core using PAD, one or two messages are eliminated (in an aggressive design, the data and 

directory replies may be combined into a single message, as they both go to the same destination tile). 
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Figure 2. (a) Sequence of on-chip network messages following a request by tile 7 for a block owned by tile 1, 
with its directory at tile 5. (b) The same when the owner tile 1 also holds the directory entry. 

The fewer the sharers of a block, the higher the impact of intelligent directory placement. A block that 

is private to a core and has its directory entry within the same tile can be accessed without any 

intermediate directory nodes participating in resolving local cache misses. A block with a couple of 

sharers and its directory co-located with one of them can be shared through direct communication among 

the sharers, also without the need to access an intermediate node. At the far end of the sharing spectrum, a 

universally-shared block that all cores access with similar frequency cannot benefit from the intelligent 

placement of its directory entry, because any location is as good as any other. Thus, applications with a 

large fraction of data with one sharer (private) or with few sharers (2-4) will benefit the most from PAD. 

In Section 4 we show that there is a considerable fraction of accesses to blocks with one or few sharers in 

a variety of parallel applications, rendering traditional address-interleaved directory placement inefficient. 

Note that in an N-tile multicore with address-interleaved distributed directory, the probability of a 

particular tile holding the directory entry for a block is 1/N. This is the probability with which a 

requesting core can access a directory within its own tile. As the number of tiles increases, the probability 

of hitting a local directory diminishes. Thus, traditional address-interleaved directory placement becomes 

increasingly inefficient in future technologies, as the core counts grow. This has a twofold impact, both 

on the power and the performance of the chip.  The extra hops to a remote directory increase the on-chip 

network power usage, and the extra hop latency increases the access penalty for a block that missed 

locally. Our proposal, Power-Aware Directory placement (PAD), promises to mitigate both effects. 
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Table 1.Description of workloads. 

Table 2.System parameters for the simulated framework. 

CMP Size 16 cores 
Processing Cores UltraSPARC III ISA; 2GHz, in-order cores, 8-stage pipeline, 4-way superscalar 

L1 Caches split I/D, 16KB 2-way set-associative, 2-cycle load-to-use, 3 ports 
64-byte blocks, 32 MSHRs, 16-entry victim cache 

L2 NUCA Cache private 512KB per core, 16-way set-associative, 14-cycle hit 
Main Memory 4 GB memory, 8KB pages, 45 ns access latency 

Memory Controllers one controller per 4 cores, round-robin page interleaving 
Interconnect 2D folded torus [8,28], 32-byte links, 1-cycle link latency, 2-cycle router 

Cache Coherence Protocol Four-state MOSI modeled after Piranha [17] 
 

4. OVERVIEW OF POWER-AWARE DIRECTORY PLACEMENT (PAD)  

At a high level, PAD utilizes the virtual address translation mechanism to assign directories to tiles at 

page granularity. The first time a page is accessed, the tile of the accessing core becomes the owner of the 

directories for that page (directory information is still maintained at cache block granularity; only the 

placement of the entries to tiles is done at the page level). This information is stored in the page table and 

propagated to the TLB. If another core accesses the same page, the directory location is provided along 

with the physical address of the page. Therefore, a second core accessing the same page can directly 

contact the directory entries for blocks in that page. Thus, PAD decouples the address of a block from the 

physical location of its directory, allowing the directory to be placed anywhere on chip without 

Benchmark Application Description 

Sc
ie

nt
ifi

c 
 

NAS appbt Solves multiple independent systems of equations 
SPEC 

Parallel tomcatv A parallelized mesh generation program 

Other 
Scientific 

dsmc Simulates the movement and collision of gas particles 

moldyn Molecular dynamics simulation 

unstructured Computational fluid dynamics application 

SPLASH-2 

barnes Barnes-Hut hierarchical N-body simulation 
fmm Simulates particle interactions using the Adaptive Fast Multipole Method 

ocean Simulates large-scale ocean movements based on eddy and boundary 
currents 

watersp Simulates the interactions of a system of water molecules 

M
ap

-R
ed

uc
e 

Phoenix 

lreg Linear regression to find best fit line for a set of points 
hist Histogram plot over a bitmap image file 

kmeans K-Means clustering over random cluster points and cluster centers 
pca Principal component analysis over a 2D-matrix 

smatch String matching in a large text file 
wcount Word count in a large text file 



complicating lookup. In the remainder of this section, we motivate the deployment of PAD through an 

analysis of the sharing patterns of scientific and Map-Reduce applications. 

4.1 Experimental Methodology 

We evaluate PAD on two different categories of benchmark suites: ‘scientific’ and Phoenix [20], 

which are described in more detail in Table 1. The scientific benchmark suites consist of a mixture of 

compute-intensive applications and computational kernels. Phoenix consists of data-intensive applications 

that use Map-Reduce. 

We analyze the data sharing patterns across our application suite by collecting execution traces of each 

workload using SimFlex [30], a full-system cycle-accurate simulator of multicores with distributed non-

uniform caches. The traces cover the entire execution of the Map phase for Phoenix applications (which 

constitutes the majority of execution time) and three complete iterations for the scientific applications. 

The workloads execute on a 16-core tiled CMP supported by a 2D folded torus interconnect similar to 

[11]. The architectural parameters for our baseline configuration are depicted in Table 2. 

4.2 Analysis of Sharing Patterns 

A core first searches for data in its local L2 cache. If it misses, then a directory access for the 

corresponding block follows. For each workload, Figure shows the percentage of local L2 misses (i.e., 

directory accesses) on blocks that are accessed by only one core during the execution of the program (1 

shr, i.e., private blocks), accessed by few cores (2-4 shr), accessed by a large number of cores (5-15 shr), 

and blocks that are universally shared (16 shr). 

As described in Section 3, placing the directory of private blocks in the same tile with the core 

accessing these blocks will eliminate two control messages for every local L2 miss. In contrast, 

conventional address-interleaved directory placement will co-locate the directory and the requestor only a 

small fraction of the time. For the cases where the accesses are to blocks with a few sharers (2-4), co-

locating the directory with one of the requesting cores will significantly increase the probability that the 

directory and the requester are in the same tile, which will also lead to the elimination of two messages. 

As the number of sharers increases, this probability decreases; in the case of universal sharing (16 shr), 



conventional address-interleaved directory placement will always co-locate the directory with one of the 

sharers, hence our proposed scheme will provide no additional benefit. 

 

Figure 3. Access sharing pattern at the block level based on number of sharers per block. 

Figure 3 shows that the scientific and Phoenix applications exhibit a significant fraction of directory 

accesses for blocks that are private or have a few sharers. Averaged across all 15 workloads, 35% of the 

directory accesses are for private data and 33% of the accesses are for data shared among 2-4 cores. 

However, there are some exceptions to this behavior: pca exhibits a large fraction of universally shared 

data. Nevertheless, our analysis suggests that in a large majority of applications, the most accessed 

directories are either for private data or for data with a few sharers, motivating the use of PAD.  



 

Figure 4. Accesses breakdown by off-chip and on-chip accesses. 

Figure 4 illustrates the breakdown of local L2 misses based on whether the access is made to an off-

chip block or to a block that resides in some remote tile on chip. Both types of accesses have to access the 

directory first. In the case of an off-chip miss, the directory sends a message to the memory controller to 

fetch the block. In an aggressive protocol, the memory controller sends the data directly to the requestor, 

and a reply acknowledgement to the directory. In a conservative protocol, the memory controller sends 

the data to the directory, which then forwards it to the requestor. In either case, the directory is informed 

about the cache fill. If the requestor and the directory entry are in different tiles, four messages are 

generated; PAD could eliminate two of them, by placing the directory entry together with the requestor. 

In the case of a local miss to a block that resides on chip, the directory sends a request to the owner of 

the block, which then sends the data to the requestor and an acknowledgement to the directory, so that it 

can update the coherence state of the block and finalize the transaction. Hence, for cache-to-cache 

transfers, a total of four messages are generated (one of which will be avoided if the directory resides with 

the requesting core, and two will be avoided if the directory resides with the owner of the block).  



 

Figure 5. Access sharing pattern at the page level based on number of sharers per page. 

PAD determines the placement of a directory at the page granularity (i.e., all the directory entries for 

the blocks within in a page are located in the same tile). Hence, the sharing pattern at the page granularity 

determines the overall performance of our scheme. Similar to Figure 3, Figure 5 shows the percentage of 

local L2 misses (i.e., directory accesses) on blocks that are within pages accessed by some number of 

cores during the execution of the workload. Averaged across all 15 applications, 23% of the accesses are 

on pages that are private and 13% of the accesses are on pages with 2-4 sharers. Thus, although working 

at the page granularity introduces false sharing, the change is not drastic as compared to block granularity.  

5. POWER-AWARE DIRECTORY PLACEMENT (PAD) 

Power-Aware Directory placement (PAD) reduces the unnecessary on-chip interconnect traffic by 

placing directory entries on tiles with cores that share the corresponding data. To achieve this, for every 

page, PAD designates an owner of the directory entries for the blocks in that page, and stores the owner 

ID in the page table. By utilizing the already existing virtual-to-physical address translation mechanism, 

PAD propagates the directory owner location to all cores touching the page. There are three important 

aspects of this scheme: the classification of pages by the OS, the directory placement mechanism, and the 

distribution of directory owners among cores. We investigate these aspects in the following sections. 



5.1 Operating System Support 

To categorize pages and communicate their directory location to the cores, PAD piggybacks on the 

virtual-to-physical address translation mechanism. In modern systems, almost all L2 caches are physically 

accessed. Thus, for all data and instruction accesses, a core translates the virtual address to a physical one 

through the TLB before accessing L2. Upon a TLB miss (e.g., the first time a core accesses a page, or if 

the TLB entry has been evicted) the system locates the corresponding OS page table entry and loads the 

address translation into the TLB. 

We implement PAD by slightly modifying this process. When a page is accessed for the first time ever 

by any of the cores, the first accessor becomes the owner of the corresponding directory entries (this is 

called first-touch directory placement and we discuss its effects in the next section). This information is 

stored in the page table. Upon a TLB fill, the OS (or the hardware page walk mechanism) provide this 

owner information to the core along with the translation, and store it in its TLB. Thus, any subsequent 

accessor of the page is also notified of the directory location for the blocks in the page. This mechanism 

guarantees that the directory is co-located with one of the sharers of the page. If the page is privately 

accessed, the tile of the accessing core will hold the directory entries for all the blocks in the page. 

5.2 Discussion 

Directory placement can be done at different granularities. For example, instead of designating one tile 

as the owner for the directory entries of all the blocks in the page, we could designate different owners for 

the directory entry of each block individually (or any granularity in between). Such a fine-grain placement 

would require considerable changes in the overall system operation. First, each TLB entry would have to 

store multiple directory owners (one per placement-grain). In turn, this would require a separate TLB trap 

for each sub-section of the page that is accessed to extract the directory location for it. Our results indicate 

that the system behaves well enough at the page granularity that employing finer-grain techniques is 

unjustified. Nevertheless, in the next section, we provide hypothetical energy savings of such an 

approach; our results indicate that, for most applications, finer granularity provides negligible benefits. 

Directory placement could be achieved by simply guiding the selection of physical addresses for each 

virtual page (i.e., some bits of the physical address will also designate the directory owner). However, 



such a technique would couple the memory allocation with the directory placement. As a result, forcing 

the use of specific address ranges could lead to address space fragmentation with detrimental 

consequences in performance, and may complicate other optimizations (e.g., page coloring for L1) that 

pose conflicting address translation requests. PAD avoids these problems by fully decoupling page 

allocation from directory placement. 

While pathological cases are possible, we didn't see any in our workloads, and we don't expect to see 

any in commercial workloads either: their data are typically universally shared with finely interleaved 

accesses [11], so the pages should distribute evenly. It is important to note here that it is simple to turn off 

PAD in pathological cases: one bit per page could indicate whether these entries are managed by PAD or 

a traditional method. Finally, in the case of heavily-migrating threads, the corresponding directory entries 

could either stay in the original tile and be accessed remotely by the migrating thread (similar to the 

baseline), or move along with it, or we could simply turn off PAD as described above. While dynamic 

directory migration is possible under our scheme, the complexities it entails may overshadow its benefits. 

Hence, we leave the investigation of on-chip directory migration schemes to future work. 

6. EXPERIMENTAL RESULTS 

6.1 Methodology 

We evaluate PAD using the SimFlex multiprocessor sampling methodology [30]. Our samples are 

drawn over an entire parallel execution (Map phase) of the Phoenix workloads, and three iterations of the 

scientific applications. We launch measurements from checkpoints with warmed caches, branch 

predictors, TLBs, on-chip directories, and OS page tables, then warm queue and interconnect state for 

100,000 cycles prior to measuring performance for 200,000 cycles. We use the aggregate number of user 

instructions committed per cycle as our performance metric, which is proportional to overall system 

throughput [30]. The architectural parameters are described in Section 4.1. 

6.2 First Touch Directory Placement 

To evaluate the effectiveness of the first-touch directory placement policy, we compute the number of 

page accesses by the core that was the first ever to access the page (FirstAcc), and compare it against the 

accesses issued by the most frequent accessor for the same page (MaxAcc). From a power optimization 



standpoint and in the absence of directory migration, MaxAcc would be the ideal directory location for 

that page. As Figure 6 shows, first-access directory placement is a good approximation of the ideal 

scheme: the number of accesses issued by the first accessor is very close to the same issued by the 

maximum accessor. 

 

Figure 6. Effectiveness of the first-touch directory placement policy. 

6.3 Distribution of Directory Entries Across Tiles 

The first-touch directory placement policy may result in an imbalanced distribution of directory entries 

to tiles, in contrast to the almost even distribution under traditional address interleaving. If some tiles are 

assigned vastly more directory entries than others, they would require a disproportionately large area for 

the directory, or could result in traffic hotspots that degrade performance. 

Figure 7 presents the distribution of directory entries under the first-touch placement policy across 

tiles for private and shared pages. The red line indicates the level of a hypothetical uniform distribution. 

The uneven distribution of directory entries is an artifact of the first-touch directory placement policy and 

could be minimized. First, only the shared pages matter; private data are accessed by only one core so 

they are always coherent, obviating the need for a directory. Thus, PAD can defer the directory entry 

allocation until a page is accessed by a second core, ensuring that directories exist only for shared pages 

and conserving directory area. With the exception of Kmeans and Fmm, shared entries for the remaining 

applications are mostly evenly distributed (in the remaining applications, a tile gets at most 18% of the 



total entries). Second, PAD can minimize the uneven distribution by utilizing a “second-touch” placement 

policy (i.e., the second sharer being assigned the entries) when the first-touching tile is overloaded. Third, 

the uneven distribution of pages is not a direct indicator of increased traffic hotspots, as some pages are 

colder than others, and the baseline may also exhibit imbalanced traffic. 

 

Figure 7. Distribution of directory entries for pages across tiles under the first-touch placement policy. 

To investigate hotspots, we analyzed the accesses to each directory tile under PAD and baseline1

6.4 Energy Savings  

. Our 

results indicate that PAD reduces the number of network messages for most applications. In some cases, it 

even cuts the number of control messages by almost half (appbt, moldyn, ocean, and tomcatv; see Figure 

9). With the exception of Kmeans, Fmm and Dsmc, the remaining applications exhibit a slightly higher 

imbalance than baseline, with a tile receiving at most 16% more directory accesses from remote cores 

(8% more on average). These imbalances are relatively small and do not impact the overall performance 

(Figure 10). Applying PAD on Kmeans, Fmm, and Dsmc exacerbates already existing traffic imbalances. 

However, we find that even these hotspots have a negligible performance impact, due to the already small 

fraction of execution time these applications spend on the distributed L2 cache. 

Figure 8 presents the fraction of network energy saved by PAD. For each application, the left bar 

indicates the energy savings attained by PAD at cache-block granularity, while the right bar presentsPAD 

                                                           
1 We omit the graph due to space constraints, and instead present our findings in the text. 



for 8KB pages. PAD reduces the network energy by 20.4% and 16.1% on average for block- and page-

granularity, respectively, mainly by reducing the network messages. As expected, the block-granularity 

shows higher energy savings compared to the page-granularity. However, as we describe in Section 5.2, 

such an implementation would complicate the design considerably (and will incur performance costs). 

 

Figure 8. On-chip network energy savings obtained by block-grain and page-grain PAD. 

 

Figure 9. Reduction of network control messages attained by PAD with respect to Baseline. 



In general, we note that the scientific applications attain higher energy savings compared to Phoenix. 

Phoenix applications exhibit a higher fraction of shared data accesses (Section 4). As a result, our 

schemes are more useful for the scientific workloads. In fact, we observe a strong correlation between the 

sharing distribution (Figure 5) and the energy reduction (Figure 8) for each of the studied applications.  

 

Figure 10.Speedup of PAD over the baseline private NUCA architecture. 

6.5 Performance Impact 

Figure 10 shows the overall speedup of PAD as compared to a baseline private NUCA architecture. 

Interestingly enough, we observe that PAD slightly increases performance in 7 out of 15 applications, and 

decreases performance in 2. PAD improves performance by up to 7% (Ocean), and by 1.3% on average, 

while the maximum performance slowdown is 1.3% (Pca). The performance is improved due to two 

reasons. First, PAD reduces the number of network packets which may eliminate congestion and hence 

reduce the overall latency of network operations. Second, data transfers (on-chip and off-chip) are faster 

because the access to a remote directory is eliminated in many cases. Because the working set is large, 

PAD’s savings are realized mostly by off-chip memory accesses. As the off-chip memory access latency 

is already large, saving a small number of cycles does not improve the performance considerably.  

The reason for the slowdown exhibited by a couple of the applications is attributed to the fact that 

PAD assigns directories for a whole page to one node. If it fails to reduce the number of network packets, 



this assignment can cause contention and hotspots. Especially for universally-shared pages, it is likely that 

blocks are accessed by different cores in nearly consecutive cycles, causing contention in the directory 

tile, and increasing the directory’s response time. On average, we observe that the positive and negative 

forces cancel each other out, and PAD has only a negligible overall performance impact. 

7. CONCLUSIONS 

As processor manufacturers strive to deliver higher performance within the power and cooling 

constraints of modern chips, they struggle to reduce the power and energy consumption of the most 

insatiable hardware components. Recent research shows that on-chip interconnection networks consume 

20% to 36% of a chip’s power, and their importance is expected to rise with future process technologies. 

In this paper, we observe that a large fraction of the on-chip traffic stems from placing directory entries 

on chip without regards to the data access and sharing patterns. Based on this observation, we propose 

Power-Aware Directory placement (PAD), a distributed cache architecture that cooperates with the 

operating system to place directory entries close to the most active requestors of the corresponding cache 

blocks, eliminating unnecessary network traversals and conserving energy and power. The mechanisms 

we propose exploit already existing hardware and operating system structures and events, have negligible 

overhead, and are easy and practical to implement. Through trace-driven and cycle-accurate simulation on 

a range of scientific and Map-Reduce applications, we show that PAD reduces the power and energy 

expended by the on-chip network by up to 37% (16.4% on average) while attaining a small improvement 

in performance (1.3% on average). Thus, we believe PAD is an appealing technique that shows great 

promise in reducing the power and energy of the on-chip interconnect, with negligible overheads. 
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