
Multi-bit Error Tolerant Caches Using Two-Dimensional Error Coding

*Computer Architecture Laboratory (CALCM), Carnegie Mellon University
†School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne

http://www.ece.cmu.edu/~truss

Jangwoo Kim* Nikos Hardavellas* Ken Mai* Babak Falsafi*† James C. Hoe*

Abstract

In deep sub-micron ICs, growing amounts of on-
die memory and scaling effects make embedded
memories increasingly vulnerable to reliability and
yield problems. As scaling progresses, soft and hard
errors in the memory system will increase and single
error events are more likely to cause large-scale multi-
bit errors. However, conventional memory protection
techniques can neither detect nor correct large-scale
multi-bit errors without incurring large performance,
area, and power overheads.

We propose two-dimensional (2D) error coding in
embedded memories, a scalable multi-bit error
protection technique to improve memory reliability and
yield. The key innovation is the use of vertical error
coding across words that is used only for error
correction in combination with conventional per-word
horizontal error coding. We evaluate this scheme in the
cache hierarchies of two representative chip
multiprocessor designs and show that 2D error coding
can correct clustered errors up to 32x32 bits with
significantly smaller performance, area, and power
overheads than conventional techniques.

1. Introduction

With the scaling of process technologies into the
nanometer regime, the reliability of embedded memory
systems becomes an increasingly important concern
for digital system designers. Nanoscale components
themselves are increasingly likely to fail, and the
growing amount of on-chip memory creates more
possible points of failure. As designers integrate more
of the memory hierarchy onto the processing die, the
number and size of memory arrays on these system-on-
a-chip (SoC) and microprocessors will increase [39].
Therefore, errors occurring in the embedded memory
systems are a growing threat to the overall SoC and
processor reliability and yield.

Errors in memories can be broadly classified as
either transient (soft) or permanent (hard) errors. There

are a number of causes of soft errors including ener-
getic particle strikes, signal or power supply noise
coupling, and erratic device behavior [3, 15, 53]. In
memories, soft errors typically manifest as bit flips in
the storage nodes of the memory cell arrays. While the
failures-in-time (FIT) rate of an individual SRAM cell
remains approximately constant across process tech-
nologies, the overall chip FIT rate increases as technol-
ogies scale due to the increasing number of SRAM
cells on a die [43]. In today's technologies, the majority
of soft error events result in only a single cell being
disturbed. However, as we scale into the nanometer
regime, the single-event multi-bit upset rate exponen-
tially increases because more memory cells fall under
the footprint of a single energetic particle strike [29,
34, 41]. The extent of a single-event multi-bit error can
range from disrupting a few bits to hundreds of bit flips
along entire columns and rows [15, 43]. SRAM
designs have already exhibited up to 16 bit corruptions
in one dimension [5, 29, 34].

Hard errors can occur either at manufacture-time
or in-the-field. Manufacture-time hard errors are due to
manufacturing defects such as electrical shorts or
opens caused by contaminants during lithography. In
memories, these errors are typically repaired at the
factory using redundant cell rows, columns, or arrays.
The incidence of manufacture-time hard errors is
expected to increase dramatically as processes scale to
nanometer dimensions overwhelming conventional
levels of spare redundancy [9, 33, 40, 44]

In-the-field hard errors are the result of a number
of phenomena including electromigration, device
wear-out, and highly energetic particle strikes [26, 30,
40, 45]. The frequency of these errors is also expected
to rise dramatically, resulting in run-time large-scale
information loss (e.g., clusters of cells, rows and
columns, or even entire arrays) [13, 40]. This poses a
significant threat to the run-time reliability of chips
with large embedded memories. Furthermore, increas-
ing inter- and intra-die device variability causes not
only an increasing percentage of memory circuits to
fail all-together, but also an increasing percentage of

circuits that are marginally functional and thus more
susceptible to hard and soft error phenomena [9, 22].

Modern microprocessors and SoC ASICs already
use various protection techniques such as error correct-
ing codes (ECC) [1, 5, 25, 31, 36], bit interleaving [5,
36], and hardware redundancy [8, 24, 33, 35] to safe-
guard their embedded memories. However, scaling up
conventional techniques to cover multi-bit errors will
incur large performance, area, and power overheads in
part due to the tight coupling between the error detec-
tion and correction mechanisms.

Thus, we propose 2D error coding, an error detec-
tion and correction scheme using error coding in two
dimensions (horizontal and vertical1) which decouples
the error detection from the error correction mecha-
nisms. The key innovation in this scheme is the combi-
nation of conventional per-word horizontal error
coding (used only for error detection and possibly
small-scale error correction) with vertical error coding
across words (used only for error correction). 2D error
coding provides scalable multi-bit error protection
that can reconstruct large clusters of flipped bits,
including multiple column/row failures, while incur-
ring significantly smaller performance, area, and
power overheads when compared to conventional
schemes with similar error coverage. This strong multi-
bit error protection can also be used to improve
memory manufacturability and yield by correcting
small-scale (e.g., single-bit) manufacture-time hard

errors on-the-fly, while still maintaining soft error
protection. We can leverage this resilience gained at
the micro-architecture level to aggressively scale
SRAM cell sizes while still maintaining robust opera-
tion and high yield. We evaluate this scheme in the
cache hierarchies of two representative chip multi-
processor (CMP) designs and show that 2D error
coding can correct clustered errors up to 32x32 bits
with significantly smaller performance, area, and
power overheads than conventional techniques.

In the next section, we discuss conventional tech-
niques for protecting memories against errors, defi-
ciencies in those techniques, and how the deficiencies
worsen as we scale process technology. In Section 3,
we introduce a 2D error coding concept, and Section 4
discusses how to implement the scheme in cache
memories. Section 5 explores the overheads of imple-
menting 2D error coding. Section 6 summarizes the
related work and Section 7 draws conclusions.

2. Limitations of conventional techniques

This section discusses limitations of conventional
memory protection techniques to motivate 2D error
coding.

2.1. Error detection and correcting codes

A common technique to protect memory arrays
against errors is to use error detecting codes (EDC) and
error correcting codes (ECC). Many conventional
cache designs use single-error-correct double-error-
detect (SECDED) codes [1, 5, 25, 31, 36]. ECC is typi-

1. Throughout the paper, “horizontal” refers to the wordline
direction and “vertical” refers to the bitline direction.

0%

20%

40%

60%

80%

100%

EDC8

SECDED

DECTED

QECPED

OECNED

E
xt

ra
 M

em
or

y
S
to

ra
g
e

64b word
256b word

0%

50%

100%

150%

200%

250%

EDC8

SECDED

DECTED

QECPED

OECNED

E
xt

ra
 E

n
er

g
y

p
er

 R
ea

d 64b word / 64kB array
256b word / 4MB array

Addr

Data Row

D
ec

od
er

ECC

Column I/O
ECC

ECC
Calc

ECC
Correct

Write
Data

=

Data

Read
Data

Addr

Data Row

D
ec

od
er

ECC

Column I/O
ECC

ECC
Calc

ECC
Correct

Write
Data

=

Data

Read
Data

(a) Error detection and correction
using ECC (c) Energy overhead of ECC (b) Area overhead of ECC

Figure 1. ECC mechanism and overhead. Figure (a) shows the basic ECC mechanism in SRAM. Figures (b)
and (c) show the extra area and energy overheads to compute, store, and access ECC bits. We modified Cacti
4.0 [48] to model a standard EDC/ECC logic based on [12].

EDC8 8-bit interleaved parity, can detect 8-bit errors
(i.e., parity_bit[i] = xor (data_bit[i], data_bit[i+8], data_bit[i+16],...))

SECDED 1-bit error correction, 2-bit error detection (Hamming distance = 4)
DECTED 2-bit error correction, 3-bit error detection (Hamming distance = 6)
QECPED 4-bit error correction, 5-bit error detection (Hamming distance = 10)
OECNED 8-bit error correction, 9-bit error detection (Hamming distance = 18)

cally applied to the data on a per-word basis (e.g., 64
bits) and allows error detection/correction at the cost of
extra bits of code storage per word and shared calcula-
tion/checking/correction logic (Figure 1(a)). The extra
area and energy overhead to implement multi-bit error
detection and correction codes grows quickly as the
code strength is increased as shown in Figure 1(b) and
(c) respectively. In addition, reading and computing the
ECC bits for error checking can be a performance
bottleneck during read operations. To avoid this
latency overhead, some microprocessors use low-over-
head EDC (i.e., byte parity) in timing-critical L1
caches, and rely on correction from the next level of
the memory hierarchy [25, 31, 36]. However, this tech-
nique must duplicate write values in a multi-bit error
tolerant L2 cache and incurs significant bandwidth and
power overheads, especially in CMP architectures with
shared L2 caches. Another method of avoiding the
code calculation latency is to periodically sweep
through the array, checking the data integrity, but this
technique (called scrubbing) has lower error coverage
than checking ECC on every read [38].

ECC can also be used for yield enhancement by
letting the ECC correct single-bit, manufacture-time
hard errors and process-variation errors [2, 44, 46].
While this increases the yield rate of the memory, it
sacrifices soft error immunity for the data words that
have a pre-existing hard error from manufacturing.

2.2. Physical bit interleaving

Some SRAM arrays use physical bit interleaving
(also known as column multiplexing) for higher perfor-
mance, optimal layout of the cell I/O circuits, and
multi-bit error protection. In a bit-interleaved memory,
multiple data words are stored in an interleaved fashion
along a single physical row of the cell array

(Figure 2(a)). This allows the column decode to be
performed in parallel with the row decode. Because a
number of columns share cell I/O circuits (i.e., sense
amplifier, write driver), their layout is less constrained
and does not have to fit in the tiny horizontal pitch of a
single cell. In a bit-interleaved memory, SECDED
ECC can be used to correct small-scale physically-
contiguous multi-bit errors, because these errors affect
logically different data words [5, 29, 34, 36].

These advantages come at the cost of additional
power due to the unnecessary pseudo-read access of
the undesired words in the row (as all cells in a row
share a wordline) and additional area and delay due to
the long wordline and column mux. These overheads
grow significantly as the interleaving factor increases
beyond about four, depending on the memory design
[4, 20]. To evaluate the overhead of bit interleaving, we
modified Cacti 4.0 [48] to model power-efficient bit-
interleaved caches in which only sub-arrays containing
the selected word are activated. Given the target degree
of interleaving, Cacti explores the design space using
wordline and bitline segmenting. Cacti optimizes each
cache for various objective functions: delay-optimal,
power-optimal, delay+area optimal, and
delay+area+power balanced. Figure 2(b) and (c) show
the dynamic read energy of two cache designs (a 64kB
L1 cache and a 4MB L2 cache respectively) as we vary
the degree of interleaving. These two cache design
points are used later in our architectural studies.

We find that the dynamic power consumption
increases significantly with additional degrees of bit
interleaving. The increase is more dramatic for the
4MB cache than the 64kB cache, because the wider
data word used in the 4MB cache increases the power
cost of interleaving and limits possible optimizations.
In optimizing for power, Cacti aggressively segments
the bitlines to compensate for the increased number of

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1:1 2:1 4:1 8:1 16:1
Degree of Interleaving

N
o
rm

al
iz

ed
 E

n
er

g
y

p
er

 R
ea

d

A
cc

es
s

Delay+Area Opt = Delay-only Opt
Power+Delay+Area Opt
Power-only Opt

Figure 2. Physical bit interleaving mechanism and overhead. Figure (a) shows the interleaving of four separate
ECC codewords. Figures (b) and (c) show the increasing energy consumption as the degree of interleaving
increases for (72,64) SECDED ECC words in a 64kB cache and (266,256) SECDED ECC words in a 4MB L2
cache.

(a) 4-way physical bit interleaving

Bit Interleaving of
4 data words

A1 B1 C1 D1

B1 B2 Bn

4:1 4:1 4:1

Single data word

A2 B2 C2 D2 An Bn Cn Dn

Bit Interleaving of
4 data words

A1 B1 C1 D1

B1 B2 Bn

4:14:1 4:14:1 4:14:1

Single data word

A2 B2 C2 D2 An Bn Cn Dn

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1:1 2:1 4:1 8:1 16:1
Degree of Interleaving

Delay+Area Opt = Delay-only Opt
Power+Delay+Area Opt = Power-only Opt

(c) 4MB cache (16-way, 1 port, 8 banks) (b) 64kB cache (2-way, 2 ports, 1 bank)

bitlines driven on each access, which instead increases
the area and the delay. When area and delay are also
optimized, the steep power consumption increase is
unavoidable. While bit interleaving and SECDED ECC
can cover small-scale multi-bit errors, large-scale
multi-bit errors (e.g., loss of an entire row) are uncor-
rectable by conventional techniques short of value
duplication. Scaling these techniques to cover even
modest levels of multi-bit errors (e.g., stronger ECC,
higher degrees of bit interleaving) results in large
performance, area, and power overheads.

2.3. Hardware redundancy

Current memory designs contain redundant rows,
columns, and sub-arrays to tolerate manufacture-time
hard errors and thus improve yield. When faulty bits
are detected during manufacture-time testing, the
faulty addresses are remapped to redundant spare rows,
columns, or sub-arrays. If all redundant units are previ-
ously allocated, the chip must either be discarded or
operate with a reduced memory capacity [8, 31, 33, 35,
36]. Combined with built-in self-test (BIST) or built-in
self-repair (BISR) mechanisms [8, 18, 24], the memo-
ries can repair hard errors both during manufacturing
test and during in-the-field operation.

Conventional hardware redundancy techniques are
inefficient because they often use an entire spare row
or column to map out only a few (sometimes only one)
erroneous bits. To maintain a small area overhead, this
technique assumes a low incidence of hard errors.
However, the hard error rate in future technologies is
expected to increase dramatically and will overwhelm
conventional row, column, or sub-array redundancy,
resulting in low chip yield rates and high costs [2, 33,
35, 44]. Dramatically increasing the amount of redun-
dancy is infeasible as this would incur large perfor-
mance and area overheads [2].

2.4. Process-level techniques

In addition to microarchitectural and circuit-level
techniques, there are a number of process-level tech-
niques to reduce soft errors such as silicon-on-insulator
(SOI) technologies [11], DRAM-like explicit capaci-
tors [19], and specially hardened processes [51]. While
these techniques can further reduce the soft error rate,
none are “silver bullets” that eliminate soft errors, and
they generally do not address hard errors. These tech-
niques are orthogonal to the microarchitectural tech-
niques discussed in this work and can be applied in
combination for additional robustness.

3. Two-dimensional error coding

While the frequency and scope of memory errors
are increasing, systems still spend the vast majority of
their time operating in the absence of errors. Yet in
conventional error detection and correction techniques,
every memory access must pay the performance, area,
and power penalties for the error coverage. For exam-
ple, if we wish to protect against multi-bit errors using
strong multi-bit ECC, every word must store extra bits
for the strong ECC codeword, and every access must
pay the power and delay penalty of accessing, calculat-
ing, and comparing those codewords. Thus, conven-
tional memory protection techniques are not well
suited to detect or recover from multi-bit failures and
cannot do so without incurring high overheads. If we
could decouple the common case error-free operation
from the uncommon-case erroneous operation and only
pay the overhead of the strong error protection on
detection of an error, we could achieve both low over-
head and strong error protection.

We propose applying two-dimensional (2D) error
coding techniques [47, 52] to the on-die embedded
memory system to enable fast common-case error-free
operation while still maintaining high error coverage
with low VLSI overheads. The key innovation in 2D
error coding is the combination of light-weight hori-
zontal per-word error coding with vertical column-wise
error coding. The horizontal and vertical coding can
either be error detection codes (EDC) or error correct-
ing codes (ECC). The types of codes used in the hori-
zontal and vertical directions allow us to trade-off the
error coverage against the VLSI overheads to tailor the
design to the types and frequency of errors expected.
The vertical codes enable correction of multi-bit errors
along rows up to and including entire row failures.
Because we use the vertical codes only for error
correction, and they are maintained in the background,
their impact on error-free operation is minimal.

To illustrate the 2D error coding concept, Figure 3
compares the error coverage and storage overhead of
three error protection schemes for a 256x256 bit
memory array.1 Figure 3(a) shows a conventional 4-
way bit-interleaved SECDED ECC as might be used in
a contemporary memory array. This scheme can cover
any error of 4-bits or smaller along a row. Figure 3(b)
depicts a scaled version of conventional techniques
using an ECC capable of 8-bit correction and 9-bit

1. For the purposes of this illustrative example, we assume
that the designer does not have the freedom to alter the
memory array aspect ratio. Our more detailed analysis in
Section 5 does take this degree of freedom into account.

detection (OECNED), which, in conjunction with 4-
way bit interleaving, enables correction of up to 32-bit
errors along a row. However, the OECNED ECC code
requires significant per-word storage overhead as well
as incurring high power and delay costs in calculating
and accessing the complex codeword.

Figure 3(c) shows an array using 2D coding with
horizontal 4-way interleaved EDC8 and vertical
EDC32. This 2D scheme can correct any clustered
multi-bit error which does not span more than 32-bits
in both the X and Y directions. To detect and correct
multi-bit errors, we use a light weight n-bit error detec-
tion code, EDCn, which computes bit-interleaved
parity within a word. The EDCn code stores n check
bits per word where each check bit stores the parity of
every n-th data bit (e.g., for EDC8 parity_bit[i] =
data_bit[i] xor data_bit[i+8] xor data_bit[i+16]...)
which allows EDCn to detect all contiguous n-bit
errors. EDC8 coding calculation requires the same
latency as byte-parity coding (as used in timing-critical
L1 caches) and incurs similar power and area over-
heads as SECDED coding. While this example 2D
scheme uses only light-weight error detection codes,
the combination of EDCs in the X and Y directions
identifies the location of erroneous bits. Logically,
their correction in a binary system by simply inverting
bits is trivial once the erroneous bits are identified.

Error correction. The combination of the hori-
zontal and vertical codes forms a single strong multi-
bit ECC applied to the entire array. The vertical parity
rows are interleaved to increase coverage along the
columns, with little impact on area, power, or delay. In
the example in Figure 3(c), 32-way vertical interleav-
ing, where each vertical parity row stores the parity of
every 32nd row, can correct all multi-bit errors that

span up to 32 rows. On the other hand, multi-bit errors
spanning over 32 columns can be corrected using the
horizontal parity code in the same way that parity rows
can correct row failures. This example scheme does not
correct multi-bit errors that span over 32 lines in both
horizontal and vertical directions. The actual correction
algorithm is described in Section 4.

Updating the vertical code. Upon every write to
a word in the array, the corresponding bits must first be
read out to update the vertical code. The delay, area,
and power overheads caused by updating the vertical
parity are small because of the modest size of the verti-
cal code array. Furthermore, the vertical update logic
can be pipelined in parallel with normal memory oper-
ations to hide update latency. The increase in delay and
power to perform the “read-before-write” operation is
also fairly modest. A number of architectural (e.g., port
stealing [27]) and circuit-level (e.g., atomic read-write
[16]) techniques can further mitigate this overhead. We
evaluate these overheads in Section 5.

Enhancing yield using horizontal SECDED
ECC. In-line single-bit error correction can improve
memory yield significantly, since it enables single-bit
manufacture-time hard errors to go uncorrected via
redundancy. For this purpose, 2D error coding can use
a horizontal per-word SECDED ECC code to correct
common-case single-bit manufacture-time hard errors
without utilizing redundancy. This configuration does
not significantly affect the overall performance
because single-bit corrections bypass the expensive
multi-bit error correction sequence. It is important to
note that 2D coding maintain multi-bit error protection,
even for those words that contain such a single-bit
manufacture-time hard error, because the vertical
coding still maintains in-the-field hard and soft error

(a) Conventional SECDED coding
- Horizontal: 4 x (72,64) SECDED

(b) Conventional 32-bit correction
- Horizontal: 4 x (121,64) OECNED
* OECNED (8-bit correcting code)

(c) 2D coding: EDC8+EDC32
- Horizontal: 4 x (72,64) EDC8
- Vertical: EDC32 (32 parity rows)

32

8x4

EDC8
(256x32)

Data Array
(256x256)

Correctable Error

32

32 Vertical EDC32

32

8x4

EDC8
(256x32)

Data Array
(256x256)

Correctable ErrorCorrectable Error

32

32 Vertical EDC32

8x44

SECDED
(256x32)

Data Array
(256x256)

4-way interleaving

8x44

SECDED
(256x32)

Data Array
(256x256)

4-way interleaving4-way interleaving

57x432

OECNED
(256x228)

Data Array
(256x256)

C
or

re
ct

ab
le

 E
rr

or

4-way interleaving

57x432

OECNED
(256x228)

Data Array
(256x256)

C
or

re
ct

ab
le

 E
rr

or

4-way interleaving4-way interleaving

Figure 3. Error coverage and area overhead of conventional coding and 2D coding in a 8kB array. Figure (a)
shows the small error coverage of 4-way interleaved SECDED coding (overhead=12.5%). Figure (b) shows the
coverage of 4-way interleaved OECNED codes (overhead=89.1%). Figure (c) shows that 2D coding achieves a
higher coverage at lower area overhead (overhead=25%).

protection. SECDED ECC can be extended to increase
its multi-bit detection coverage similar to that of inter-
leaved EDC with very low overhead (e.g., SECDED-
SBD (single-byte error detection)) [12, 28].

The key design advantages of 2D error coding are:
• High multi-bit error coverage. 2D coding can

correct any clustered multi-bit error provided the
error footprint does not exceed the error coding
interleaving factor in both dimensions simulta-
neously.

• Low VLSI overheads. The performance, area, and
power overheads of 2D coding are significantly
lower than conventional techniques with similar
error coverage, as evaluated in Section 5.

• Improved manufacturability and yield. The
additional micro-architectural resilience of a 2D
coding protected memory enhances the manufac-
turability and yield of memories. This boost in
manufacturability can be leveraged to enable
aggressive SRAM cell size scaling. The boost yield
is quantified in Section 5.

4. Implementing 2D coding for caches

While L2 caches typically employ write-back to
conserve off-chip bandwidth and power, L1 caches can
use either write-back or write-through policies.
Recently, many designs have opted to implement
write-through L1 caches to reduce vulnerability to
errors and obviate the need for SECDED ECC in L1
[25, 31, 36]. Because dirty data also resides in other
cache levels, write-through L1 caches employ only a
light-weight EDC and simply invalidate blocks with
detected errors. With trends towards higher levels of

chip integration and chip multiprocessors, however,
write-through L1 caches are becoming less attractive
due to prohibitive demands on bandwidth and power to
the lower cache level.

Figure 4(a) depicts the anatomy of a cache data
sub-array equipped with 2D error coding and the
process for updating the vertical code on writes. Cache
tag sub-arrays are handled identically. Because 2D
coding is applicable to both ECC and EDC horizontal
codes, in this section, we only show a cache model
equipped with SECDED ECC horizontal code and
interleaved-parity vertical code.

Next, we describe the operation of the coding
scheme during error-free operation and in the presence
of errors.

Vertical parity update during error-free mode.
In the absence of errors, the horizontal code and the
vertical code are updated on every write. Writes origi-
nate from the processor (e.g., storing a word into an L1
cache line) or the cache controllers (e.g., dirty evic-
tions). The updates to the horizontal code are based
only on the data to be written, unless they are partial
writes. However, as depicted in Figure 4(a), the
updates to the vertical code require reading the old data
word (Step 1) and XORing with the new data word to
compute and update the vertical parity (Step 2). Thus,
the cache controller converts every write operation to a
“read-before-write” operation reading the old data
before performing the write of the new data.

The “read-before-write” operation increases the
delay and the power consumed by all write operations.
The resulting performance impact on the cache mani-
fests as additional port contention. Fortunately, L1 data
caches are typically multiported or multi-banked in so
called “fat” out-of-order superscalar processors to

Uncorrectable

Error
in row?

Correction = XOR (Parity row, Row)

No

Yes

Multi-bit error detected in rowi

Yes

Yes
No

Rowi = Correction

Read next unchecked row

More
rows?

No

Correction completed

ECC correct

Single-bit
error?

Uncorrectable

Error
in row?

Correction = XOR (Parity row, Row)

No

Yes

Multi-bit error detected in rowi

Yes

Yes
No

Rowi = Correction

Read next unchecked row

More
rows?

No

Correction completed

ECC correct

Single-bit
error?

Error
in row?

Correction = XOR (Parity row, Row)

No

Yes

Multi-bit error detected in rowi

Yes

Yes
No

Rowi = Correction

Read next unchecked row

More
rows?

No

Correction completed

ECC correct

Single-bit
error?

Figure 4. 2D-protected cache architecture. Figure (a) shows the vertical update mechanism illustrated in two
steps. Figure (b) shows the vertical multi-bit error correction process embedded as a BIST/BISR algorithm.

(a) Data write: vertical parity update with ‘read-before-write’ operation

Addr

Data Row

D
ec

od
er

ECC

Column I/O

Data Row

D
ec

od
er

ECC

Column I/O

Vertical Parity Row

ECC
Calc

Write
Data

Read old data Write new data & ECC

Vertical Parity Row

ECC
Calc

Write
Data

Vertical Parity
Update

Addr

Data Row

D
ec

od
er

ECC

Column I/O

Addr

Data Row

D
ec

od
er

ECC

Column I/O

Data Row

D
ec

od
er

ECC

Column I/O

Data Row

D
ec

od
er

ECC

Column I/O

Vertical Parity Row

ECC
Calc

Write
Data

Read old data Write new data & ECC

Vertical Parity Row

ECC
Calc

Write
Data

Vertical Parity
Update

(b) Multi-bit error recovery process

Step 1: read old data and
vertical parity

Step 2: write new data and
vertical parity

accommodate bursty access patterns and provide target
latency and bandwidth [1, 31, 36], while L1 data
caches in “lean” highly-threaded in-order processors
hide the access latencies using thread scheduling [25],
thus, much of the time there is spare cache bandwidth
[26]. The L2 caches in CMPs are also typically multi-
banked [25, 31] to provide high bandwidth for multiple
threads. Moreover, write-backs from L1 often account
for a small fraction of overall L2 traffic, especially for
commercial server workloads.

In Section 5, we present empirical results for two
CMP architectures and a wide spectrum of workloads
indicating that the performance degradation due to
“read-before-write” operations in 2D-protected L1 and
L2 caches is modest. We also evaluate a cache port
stealing technique based on [27] to reduce the perfor-
mance degradation in L1 caches of out-of-order
processors. Port stealing is a simple scheduling tech-
nique that issues the read parts of “read-before-write”
operations ahead of the write portion, scheduling the
read for idle L1-port cycles. This scheme eliminates
most of the port contention problem in L1 caches.

To simplify the update logic and avoid delays in
cache port scheduling, the cache controller conserva-
tively issues “read-before-write” requests for both
write hits and write misses, even though the old data
are used to update the vertical parity row only upon
write hits. Moreover, because tag sub-arrays are always
read upon a cache access, there is no need for a sepa-
rate “read-before-write” operation when updating the
vertical codes for the tag sub-arrays.

The vertical parity update logic can be pipelined
and taken off the cache access critical path and thus has
no direct effect on performance. As long as the vertical
parity update rate matches the data access rate of the
cache, the vertical parity update does not affect the
access time or cycle time of the cache sub-array.
Updating a register-like vertical parity row is faster
than accessing the main array so the rate can be easily
matched, in practice.

2D recovery mode. When the horizontal code
detects an error that it cannot correct, the controller
initiates a 2D recovery process. The controller reads all
data rows that share a vertical parity row with the
faulty data row and XORs their values together. The
result of the XOR operation is the original value of the
faulty row, which is then written back to the proper
location. If many rows detect a single-bit error in the
same bit position, this indicates a large-scale failure
along a column (e.g., column failure). The recovery
process then examines the vertical code to locate the
faulty column, and re-initiates the correction process in
the horizontal direction.

The recovery process can be implemented as part
of the on-chip BIST/BISR hardware [8, 18, 24].
Figure 4(b) shows an example vertical multi-bit error
correction algorithm. The grey area is enabled when
the horizontal SECDED ECC code is used. The latency
of the 2D correction process is similar to that of a
simple BIST march test applied to the data array (i.e., a
few hundred or thousand cycles, depending on the
number of rows). Because errors are very rare on the
order of one every few days [43], the overhead of
recovery process does not affect the overall perfor-
mance.

5. Experimental Results

We evaluate 2D coding with FLEXUS [21], a
cycle-accurate, full-system simulator, using two differ-
ent CMP designs: (1) a “fat” CMP system consisting of
four 4-wide superscalar out-of-order cores using dual-
port L1 data caches and 16MB of shared L2 cache, and
(2) a “lean” CMP system consisting of eight 2-wide
superscalar 4-way fine-grain multi-threaded in-order
cores using single-port L1 data caches and 4MB of
shared L2 cache. The fat CMP balances throughput and
single-thread performance, whereas the lean CMP
targets only high throughput. Both systems use a cache
coherence protocol derived from the Piranha CMP
architecture [7]. We list simulated system and work-
load parameters in Table 1.

We use a mix of commercial and scientific work-
loads running on Solaris 8. The commercial workloads
consist of online transactional processing (OLTP),
decision support system (DSS), and web server work-
loads. For OLTP, we run a TPC-C-like workload, in
which multiple clients issue short update transactions
against a database. For the DSS workload, we run a
TPC-H-like throughput test on a representative subset
of scan- and join-bound queries [42], in which multiple
concurrent clients issue complex read-only queries
against large datasets. Both database workloads run on
IBM DB2 v8 Enterprise Server Edition. The web
server workload consists of SPECweb99 running on
Apache HTTP Server v2.0. We drive the web server
using a separate client system and a high-bandwidth
link tuned to saturate the server. Finally, we include
three parallel shared-memory scientific workloads that
exhibit a diverse range of memory access patterns.

In our simulations, we use the SimFlex statistical
sampling methodology [50]. Our samples are drawn
over an interval of 10 to 30 seconds of simulated
execution time for OLTP, DSS, and web workloads and
a single iteration for scientific workloads. We target
95% confidence intervals with ±5% error using

matched-pair comparison for relative performance
measurements. We launch measurements from check-
points with warmed caches and branch predictors, then
run for 100,000 cycles to warm the pipeline and queue
states prior to 50,000 cycles of cycle-accurate measure-
ment. We assess performance by measuring the aggre-
gate user instructions committed per cycle (IPC),
which is proportional to the system throughput [50].

We use Cacti 4.0 [48] to model the power, delay,
and area overhead of caches used in this study. We
model the shared L2 cache as multiple cache banks
residing on each corner of the die with a core-to-L2
crossbar in the center. The latencies of L2 caches are
measured taking into consideration the average core-
to-L2 crossbar latency, wire delay, and cache bank
access latency. The area, delay, and power models
assume a 70nm process technology.

5.1. 2D coding overheads

We implement 2D error coding for L1 data caches
and L2 shared caches in the fat and lean baseline CMP

systems. We apply EDC8 and EDC16 horizontal codes
to 64-bit words in L1 caches and a 256-bit word in L2
caches, respectively. We implement 4-way bit-inter-
leaved L1 caches and 2-way bit-interleaved L2 caches
to allow the horizontal codes to detect 32-bit errors
along a row. We also apply an EDC32 vertical code by
adding 32 parity rows per cache bank. This configura-
tion can detect and correct 32x32-bit clustered errors.

The right-most bars in Figure 5 show the perfor-
mance overheads of the two baseline systems where
both the L1 and L2 caches are protected by the 2D
error coding described. The fat CMP experiences a
2.9% average performance loss whereas the lean CMP
experiences a 1.8% average performance loss, showing
that both baseline systems can tolerate the cache
latency and port occupancy introduced by 2D coding.
The operations directly affected by 2D coding are write
requests, dirty evictions, and L1-to-L1 transfers of
dirty data, most of which update the cache off the criti-
cal path and thus have a low impact on performance.
2D coding indirectly affects cache performance by
increasing occupancy and potentially delaying other

Table 1. Simulated systems and workload parameters

Fat CMP Lean CMP

Cores Four OoO cores
4GHz, UltraSparc ISA
4-w superscalar,
64-entry store queue

Eight in-order cores
4GHz, UltraSparc ISA
2-w superscalar, 4-threads,
64-entry store queue

L1 cache 64kB split I/D, 2-way assoc,
64B lines, 2-cycle hit, write-
back, 2-port D-cache

64kB split I/D, 2-way assoc,
64B lines, 2-cycle hit, write-
back, 1-port D-cache

L2 cache 16MB unified, 8-way assoc,
64B lines,1 port, 16-cycle
hit, 1-cycle crossbar latency,
write-back, 64 MSHRs

4MB unified, 16-way assoc,
64B lines, 1 port, 12-cycle
hit, 1-cycle crossbar latency,
write-back, 64 MSHRs

Memory 3GB, 60ns access latency, 64 banks

Commercial Workloads

 DB2 OLTP

DB2 DSS

Apache Web

100 warehouses (10GB), 64 clients,
2GB buffer pool
Queries 1,6,13,16, 1GB dataset,
16 clients, 480MB buffer pool
16K connections, fastCGI,
worker thread model

Scientific Workloads

Moldyn

Ocean

Sparse

19,652 molecules, boxsize 17,
2.56M max iterations
258x258 grid, 9600s relaxation,
29K res., error tolerance 1e-7
4096x4096 matrix

0%

5%

10%

15%

OLT
P

DSS W
eb

Mol
dy

n

Oce
an

Sp
ar

se

Av
er

ag
e

Pe
rf

or
m

an
ce

 L
o
ss

 (
%

 I
P
C
)

0%

5%

10%

15%

OLT
P

DSS
W
eb

Mol
dy

n

Oce
an

Sp
ar

se

Av
er

ag
e

P
er

fo
rm

an
ce

 L
o
ss

 (
%

 I
PC

)

Figure 5. Performance (IPC) loss in 2D-protected caches. The fat baseline experiences a larger performance
loss due to L1 cache port contention. Port stealing effectively reduces the contention.

(a) Fat baseline (b) Lean baseline

L1 D-cache L1 D-cache with port stealing L2 cache L1 D-cache with port stealing + L2 cache

cache requests. However, the out-of-order execution of
the fat CMP and the multiple hardware threads of the
lean CMP effectively hide the additional delay.

The first two bars in Figure 5 represent the perfor-
mance degradation when protecting only L1 data
caches with 2D coding whether port stealing is applied
or not. For the fat CMP, port stealing reduces approxi-
mately 72% and 34% of port contention for commer-
cial workloads and memory-intensive scientific
workloads, respectively. For the lean CMP, we find
port stealing has a smaller impact because port conten-
tion in L1 caches is already minimal. The third and
fourth bars in Figure 5 show the performance degrada-
tion when protecting only the L2 cache or both the L1
(with port stealing) and L2 caches, respectively.

Figure 6 shows the average distribution of cache
accesses over 100 processor cycles. Both the L1 data
caches and L2 shared caches in the two systems
execute approximately 20% more cache requests due
to the extra reads imposed by 2D coding. The fat CMP,
consisting of four out-of-order cores, consumes higher
L1 cache bandwidth per core, whereas the lean CMP,
consisting of eight in-order cores, consumes higher L2
cache bandwidth. The different bandwidth usage
explains the fat CMP’s larger performance loss for L1
cache protection and the lean system’s larger perfor-
mance loss for L2 cache protection. The web server
workload in the lean CMP exhibits a 4% performance

loss due to high bank contention in the L2 cache
caused by the increased workload throughput.

Figure 7 compares the overhead of code storage,
coding latency, and dynamic power consumption of 2D
coding with that of conventional methods in protecting
a 64kB L1 data cache and a 4MB L2 cache. We evalu-
ate the overhead of two baseline 2D coding methods;
4-way interleaved horizontal EDC8 with vertical
EDC32 (EDC8+Intv4, EDC32) and 2-way bit-inter-
leaved horizontal EDC16 with vertical EDC32
(EDC16+Intv2, EDC32). To achieve the same 32-bit
error coverage, conventional methods combine ECC
coding and physical bit interleaving. Therefore,
DECTED, QECPED, and OECNED codes are
combined with 16-way (DECTED+Intv16), 8-way
(QECPED+Intv8), and 4-way physical bit interleaving
(OECNED+Intv4), respectively. We measure the
dynamic power consumption assuming that each cache
receives 20% more read requests due to 2D coding
(Figure 6) and that read and write operations take the
same amount of dynamic energy. We estimate the code
size of multi-bit ECC codes based on Hamming
distance [28]. Coding latency is estimated as the depth
of syndrome generation and comparison circuit that
consists of an XOR tree and an OR tree. We assume
that there is an XOR tree dedicated to each check bit to
compute all check bits within a single word in parallel.
We apply EDC/ECC coding to 48-bit, 64-bit, and 256-

0

20

40

60

80

100

OLTP DSS Web Moldyn Ocean Sparse
C
ac

h
e

A
cc

es
se

s
/

1
0
0
 c

yc
le

s Extra Read for 2D Coding
Fill/Evict
Write
Read: Data
Read: Inst

0

20

40

60

80

100

OLTP DSS Web Moldyn Ocean Sparse

C
ac

h
e

A
cc

es
se

s
/

1
0
0
 c

yc
le

s Extra Read for 2D Coding
Fill/Evict
Write
Read: Data
Read: Inst

Figure 6. Cache access breakdown for each baseline system during 100 CPU cycles. The distribution shows
that writes, that issue ‘read-before-write’ operations, take only a small fraction of overall cache accesses.

(c) Fat baseline: L2 cache accesses (d) Lean baseline: L2 cache accesses

0

20

40

60

80

100

120

OLTP DSS Web Moldyn Ocean Sparse

C
ac

h
e

A
cc

es
se

s
/

1
0
0
 c

yc
le

s Extra Read for 2D Coding
Fill/Evict
Write
Read: Data

0

20

40

60

80

100

120

OLTP DSS Web Moldyn Ocean Sparse

C
ac

h
e

A
cc

es
se

s
/

1
0
0
 c

yc
le

s Extra Read for 2D Coding
Fill/Evict
Write
Read: Data

(a) Fat baseline: L1 data cache accesses (b) Lean baseline: L1 data cache accesses

bit words for the tag arrays, the 64kB L1 data array,
and the 4MB L2 data array, respectively. All these
overheads are normalized to the overhead of conven-
tional SECDED protection with 2-way physical bit
interleaving.

Conventional methods consume a significant
amount of power due to complex coding logic, extra
check bit access, and bit interleaving. Using relatively
simpler multi-bit ECC codes (e.g., DECTED) necessi-
tates increasing the degree of power-hungry bit inter-
leaving to meet the coverage target, whereas using
stronger codes (e.g., OECNED) can alleviate the power
overhead of bit interleaving, but increases the power
consumed for coding and accessing the check bits. On
the other hand, 2D coding only incurs a minimal
amount of power due to the simple horizontal and
vertical codes. 2D coding’s extra power consumption
in Figure 7(a) is mainly due to the 4-way bit interleav-
ing required to detect 32-bit errors using EDC8 codes.

2D coding also need less area to store check bits
than conventional techniques, because the horizontal
code requires fewer check bits per word and the verti-
cal code requires only 32 parity rows per bank. The
extra area overhead of 2D coding compared to the
baseline SECDED protection is only 5% and 6% for
the L1 and L2 caches, respectively. The right-most bar
in Figure 7(a) shows that L1 caches using a write-
through policy can duplicate values in the L2 cache to
avoid the 2x area overhead at the cost of significant
power and bandwidth increase in the L2 cache.
Because 2D coding’s horizontal coding latency is close
to the conventional byte-parity checking latency, the
L1 cache can employ a write-back policy without
increasing the cache access delay. This scheme has a
significant power and performance advantage over
protecting L1 caches using a write-through policy.

5.2. Manufacturability and yield improvement

2D error coding’s ability to correct multi-bit errors
can also increase the manufacturability and yield of
memories. As the areas of SoCs and microprocessors
are increasingly dominated by the embedded memory
system, overall chip yield will closely track the on-die
memory yield [39]. As discussed in Section 2.3,
scaling conventional horizontal per-word ECC to cover
multi-bit errors incurs considerable overheads, and
thus memories can only practically employ an error
detecting code or SECDED ECC. In a 2D-protected
memory, the horizontal code can be used to correct
small-scale (e.g., single-bit) manufacture-time hard
errors without using redundant elements, while main-
taining run-time error immunity. A small degree of
interleaving increases the hard error correction cover-
age further. Because most manufacture-time hard
errors are single-bit errors, this greatly decreases the
spare redundancy requirements [2, 44, 46].

Figure 8 shows the expected yield and reliability
when ECC corrects single-bit hard errors. Figure 8(a)
estimates the expected yield for a 16MB L2 cache as
we vary the faulty-bit hard error rate (HER). We use a
yield model similar to Stapper et al. [46] which
assumes a random distribution of hard faults through-
out the memory array. We then calculate the probabil-
ity of a single data word containing a multi-bit error,
and if more data words have multi-bit errors than
redundant rows, the memory is considered faulty. The
yield of a cache equipped with only spare rows falls
quickly with the error rate due to the high number of
words with one or more faults. The yield with ECC
alone has also poor yield because it cannot correct any
word with a multi-bit error. When we combine ECC
and a small number of spare rows, the yield improves

0%

50%

100%

150%

200%

2D
 (E

DC8
+In

tv
4,

ED
C3

2)

DEC
TE

D+In
tv
16

QEC
PE

D+In
tv
8

OEC
NE

D+In
tv
4

ED
C8

+In
tv
4(

W
r-
th

ro
ug

h)

N
or

m
al

iz
ed

 O
ve

rh
ea

d 325% 309% 352% 432%

0%

50%

100%

150%

200%

2D
 (E

DC1
6+

In
tv
2,

ED
C3

2)

DEC
TE

D+In
tv
16

QEC
PE

D+In
tv
8

OEC
NE

D+In
tv
4

504% 423%459%

(a) 64kB L1 data cache (b) 4MB L2 cache
Figure 7. Area, delay and power overhead of various coding schemes for 32x32-bit coverage, normalized to
SECDED protection with 2-way physical bit interleaving. 2D coding incurs significantly lower overheads.

Code Area Coding Latency Dynamic Power

dramatically because the redundancy is best suited for
correcting words with multi-bit errors and SECDED
ECC is best suited for correcting words with only a
single-bit error.

Figure 8(b) estimates the expected reliability for a
system consisting of ten 16MB caches when ECC
corrects single-bit hard errors with or without 2D
coding. Assuming a soft error rate of 1000FIT/Mb
[43], we measure the probability of all soft errors in a
given period that occur only in non-faulty data words.
We vary the faulty-bit hard error rate from 0.0005% to
0.005%. When a single-bit soft error occurs in a faulty
cache block, it is combined with a faulty bit to create a
multi-bit error within a single data word which
SECDED ECC cannot correct. The graph shows that as
the system continues to operate, there is a significant
probability of soft errors occurring in faulty cache
blocks, even at low hard error rates. Therefore, ECC
should not be used to correct hard errors unless the
memory has a multi-bit error correction capability. On
the other hand, 2D coding always maintains run-time
error immunity, even at the presence of hard errors.

We can leverage this robustness gained at the
micro-architecture level to aggressively scale SRAM
cell sizes while still maintaining robust operation and
high yield. Since 2D coding can correct any single-bit
error in a word in-line with the memory operation, this
obviates the need for using expensive redundant rows/
columns/arrays to correct these single-bit errors. Thus,
in a memory with 2D coding, we can scale the cell
down further than in designs without robust micro-
architectural error correction, since even after redun-
dancy assignment, the cell array does not need to be
perfect. In-line error correction afforded by 2D error
coding transparently corrects any single-bit error in a
word, and yet the memory retains runtime error toler-
ance against additional soft and hard errors.

6. Related work

Some well-known SECDED ECC codes, such as
HV parity [52] and 2D-parity product codes [10, 17],
employ horizontal and vertical parity bits to detect and
correct single-bit errors within a word. To detect an
error, these schemes must read both horizontal and
vertical parity bits. Tanner [47] applies product codes
to entire RAM arrays to reduce the code area. This
scheme detects and corrects single-bit errors within a
memory array. Mohr [32] also applies product codes to
memory arrays and uses horizontal byte-parity codes to
enable low-latency error detection. The proposed 2D
coding in this paper similarly achieves the area-effi-
cient protection by applying only a single strong error
correcting code to the entire array. However, our
scheme differs from these codes by (1) enabling large-
scale multi-bit error detection and correction, (2) sepa-
rating the high-overhead multi-bit error correcting
logic from low-overhead error detection logic, and (3)
maintaining the vertical codes off the critical path of
normal operations.

Many microprocessors use low-overhead EDC
codes (i.e., byte parity) in L1 caches and duplicate the
data in lower level caches using a write-through policy
[25, 31, 36]. However, this technique assumes a multi-
bit error tolerant L2 cache and incurs significant band-
width and power overheads in the L2 cache (especially
in CMPs with shared L2 caches). To alleviate the
costly writes to L2 caches, Zhang et al. [54] propose
using a small, fully-associative structure that holds
duplicate copies of recently-written blocks. When
evicting from the small cache, the data is written back
to the multi-bit error tolerant L2 cache. This scheme
provides full protection to the L1 cache. However,
duplications in a small cache can still increase the
performance loss and power overhead by several

0%

20%

40%

60%

80%

100%

0 800 1600 2400 3200 4000

Number of failing cells

C
a
ch

e
 Y

ie
ld

Spare_128
ECC Only
ECC + Spare_16
ECC + Spare_32

 (~0.003%) (~0.0003% Error)

- 16MB L2 cache
0%

20%

40%

60%

80%

100%

0
1 y

ea
r

2 y
ea

rs

3 y
ea

rs

4 y
ea

rs

5 y
ea

rs

Su
cc

es
sf

ul
 C

or
re

ct
io

n

With 2D coding
Without 2D, HER=0.0005%
Without 2D, HER=0.001%
Without 2D, HER=0.005%

- 10 x 16MB caches
- 1000 FIT/Mb

(a) Yield of 16MB L2 cache using ECC-based hard error correction (b) Reliability of ECC-based hard error correction

Figure 8. L2 cache yield and reliability when ECC corrects hard errors. (a) 2D protection using the horizontal
SECDED ECC greatly reduces the amount of spare lines, thus improving the yield. (b) 2D coding’s multi-bit
error correction capability maintains in-the-field hard and soft error immunity.

factors if contention in the small cache causes frequent
writes to the L2 cache [37].

Some L1 cache designs employ early writebacks
of dirty blocks to reduce the vulnerability of cache
blocks to soft errors using scrubbing, dead-block inter-
vals, and fixed-interval delays [6, 14, 49]. These
schemes can reduce the vulnerability of L1 cache
blocks against multi-bit soft errors. However, these L1
cache protection techniques protect only portions of
the L1 cache and can incur significant performance
degradation due to increased miss rates in the L1
cache.

Sadler and Sorin [37] separate error detection from
correction in L1 data caches by integrating fast error-
detection codes with the data array and maintaining a
separate array for holding error correcting codes. The
chosen codes detect and correct multi-bit faults.
However, this scheme allocates a large area to store a
multi-bit ECC for every cache word. To reduce the area
overhead, Kim and Somani [23] protect only the most
error-prone cache blocks based on the access
frequency. However, this scheme neither provides full
protection nor considers large-scale multi-bit errors.

The proposed 2D error coding in this paper
provides full protection against large-scale multi-bit
errors. This mechanism can be equally applicable to all
levels of the cache hierarchy, while maintaining only
small performance, area, and power overheads. 2D
coding can be configured for the low-latency operation
required for timing-critical arrays or yield-enhance-
ment without sacrificing run-time error immunity.

7. Conclusion

Just as power has emerged in recent years as a
primary constraint in digital system design, as we scale
down to the nanometer regime, reliability and manu-
facturability will emerge as first-class design
constraints. Given the large amount of memory on
modern microprocessors and SoCs, memory reliability
and manufacturability will be of paramount impor-
tance. Conventional error protection techniques will be
unable to cope with the frequency and scope of error
events in future technology generations. Our 2D error
coding scheme provides scalable multi-bit error protec-
tion to enhance memory reliability and manufacturabil-
ity, making it a promising reliability technique for
future memory designs.

Acknowledgements
We thank the SimFlex and TRUSS research

groups at Carnegie Mellon. We also thank Jaume
Abella, Xavier Vera, and Antonio González at Intel

Barcelona Research Center for their helpful feedback.
This work is supported by NSF award ACI-0325802,
NSF CAREER award CCF-0347568, Sloan fellow-
ship, the Center for Circuit and System Solutions,
FCRP, Cylab, and by grants and equipment from Intel.

References

[1] Advanced Micro Devices. AMD eighth-generation pro-
cessor architecture. AMD white paper, Oct 2001.

[2] A. Agarwal, el al. Process variation in embedded memo-
ries: Failure analysis and variation aware architecture.
IEEE Journal of Solid-State Circuits, Sep 2005.

[3] M. Agostinelli, et al. Erratic fluctuations of SRAM cache
Vmin at the 90nm process technology node. In Interna-
tional Electron Devices Meeting, Dec 2005.

[4] B. S. Amrutur and M. A. Horowitz. Speed and power
scaling of SRAM’s. IEEE Transactions on Solid-State
Circuits, 35(2):175–185, Feb 2000.

[5] H. Ando, et al. Accelerated testing of a 90nm SPARC64V
microprocessor for neutron SER. In The Third Workshop
on System Effects on Logic Soft Errors, 2007.

[6] G. Asadi, et al. Balancing performance and reliability in
the memory hierarchy. In International Symposium on
Performance Analysis of Systems and Software, Mar
2005.

[7] L. Barroso, et al. Piranha: A scalable architecture base on
single-chip multiprocessing. In International Symposium
on Computer Architecture, Jun 2000.

[8] D. K. Bhavsar. An algorithm for row-column self-repair
of RAMs and its implementation in the Alpha 21264. In
International Test Conference, pp. 311–318, Sep 1999.

[9] S. Borkar. Designing reliable systems from unreliable
components: the challenges of transistor variability and
degradation. IEEE Micro, 25(6):10–17, Nov-Dec 2005.

[10] P. Calingaert. Two-dimensional parity checking. Journal
of the ACM, 8(2):186–200, Jan/Mar 1961.

[11] E. H. Cannon, et al. SRAM SER in 90, 130 and 180 nm
bulk and SOI technologies. In International Reliability
Physics Symposium Proceedings, pp. 300–304, Apr 2004.

[12] C. L. Chen and M. Y. Hsiao. Error-correcting codes for
semiconductor memory applications: A state-of-the-art
review. IBM Journal of Research and Development,
28(2):124–134, Mar 1984.

[13] K. Chkraborty and P. Mazumder. Fault-Tolerance and
Reliability Techniques for High-Density Random-Access
Memories. Prentice Hall PTR, 2002.

[14] V. Degalahal, et al. Soft errors issues in low-power cach-
es. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 13(10):1157–1165, Oct 2005.

[15] P. E. Dodd, et al. Neutron-induced soft errors, latchup,
and comparison of SER test methods for SRAM technol-
ogies. In International Electron Devices Meeting, Dec
2002.

[16] J. Dorsey, et al. An integrated quad-core Opteron proces-
sor. In International Solid-State Circuits Conference,

2007.
[17] P. Elias. Error-free coding. IRE Transactions on Infor-

mation Theory, PGIT-4:29–37, Sep 1954.
[18] M. Franklin and K. K. Saluja. Built-in self-testing of ran-

dom-access memories. IEEE Computer, Oct 1990.
[19] Y. Fujii, et al. Soft error free, low power and low cost su-

perSRAM with 0.98um2 cell by utilizing existing 0.15um
DRAM process. In Digest of Technical Papers, Sympo-
sium on VLSI Technology, Jun 2004.

[20] K. Ghose and M. B. Kamble. Reducing power in super-
scalar processor caches using subbanking, multiple line
buffers and bit-line segmentation. In International Sym-
posium on Low Power Electronics and Design, Aug 1999.

[21] N. Hardavellas, et al. Simflex: A fast, accurate, flexible
full-system simulation framework for performance evalu-
ation of server architecture. SIGMETRICS Performance
Evaluation Review, 31(4):31–35, Apr 2004.

[22] R. Heald and P. Wang. Variability in sub-100nm SRAM
designs. In International Conference on Computer-Aided
Design, Nov 2004.

[23] S. Kim and A. Somani. Area efficient architectures for
information integrity checking in cache memories. In In-
ternational Symposium on Computer Architecture, May
1999.

[24] I. Kim, et al. Built in self repair for embedded high den-
sity SRAM. In International Test Conference, 1998.

[25] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A
32-way multithreaded Sparc processor. IEEE Micro,
25(2):21–29, Mar-Apr 2005.

[26] S. J. Krumbein. Metallic electromigration phenomena.
IEEE Transactions on Components Hybrids, and Manu-
facturing Technology, 11(1):5–15, Mar 1998.

[27] K. M. Lepak and M. H. Lipasti. Silent stores for free. In
International Symposium on Microarchitecture, Dec
2000.

[28] S. Lin and D. J. Costello. Error Control Coding: Funda-
mentals and Applications. Prentice Hall, 1983.

[29] J. Maiz, et al. Characterization of multi-bit soft error
events in advanced SRAMs. In International Electron
Devices Meeting, Dec 2003.

[30] J. G. Massey. NBTI: What we know and what we need to
know: A tutorial addressing the current understanding and
challenges for the future. In International Integrated Re-
liability Workshop Final Report, pp. 199–201, Oct 2004.

[31] J. Mitchell, D. Henderson, and G. Ahrens. IBM
POWER5 processor-based servers: A highly available de-
sign for business-critical applications. IBM White paper,
Oct 2005.

[32] K. C. Mohr and L. T. Clark. Delay and area efficient
first-level cache soft error detection and correction. In In-
ternational Conference on Computer Design, Oct 2006.

[33] M. Nicolaidis, N.Achouri, and S. Boutobza. Dynamic
data-bit memory built-in self-repair. In International Con-
ference on Computer Aided Design, Nov 2003.

[34] K. Osada, K. Yamaguchi, and Y. Saitoh. SRAM immu-
nity to cosmic-ray-induced multierrors based on analysis
of an induced parasitic bipolar effect. IEEE Journal of
Solid-State Circuits, 39(5):827–833, May 2004.

[35] S. Ozdemir, et al. Yield-aware cache architectures. In In-
ternational Symposium on Microarchitecture, Dec 2006.

[36] N. Quach. High availability and reliability in the Itanium
processor. IEEE Micro, 20(5):61–69, Sep-Oct 2000.

[37] N. N. Sadler and D. J. Sorin. Choosing an error protec-
tion scheme for a microprocessor’s L1 data cache. In In-
ternational Conference on Computer Design, Oct 2006.

[38] A. M. Saleh, J. J. Serrano, and J. H. Patel. Reliability of
scrubbing recovery-techniques for memory systems.
IEEE Transactions on Reliability, Apr 1990.

[39] U. Schlichtmann. Tomorrows high-quality SoCs require
high-quality embedded memories today. In International
Symposium on Quality Electronic Design, Mar 2002.

[40] J. Segura and C. F. Hawkins. CMOS Electronics: How It
Works, How It Fails. Wiley-Interscience, 2004.

[41] N. Seifert, V. Zia, and B. Gill. Assessing the impact of
scaling on the efficacy of spatial redundancy based miti-
gation schemes for terrestrial applications. In The Third
Workshop on System Effects on Logic Soft Errors, 2007.

[42] M. Shao, A. Ailamaki, and B. Falsafi. DBmbench: fast
and accurate database workload representation on modern
microarchitecture. In International Conference on Com-
puter Science and Software Engineering, 2005.

[43] C. W. Slayman. Cache and memory error detection, cor-
rection, and reduction techniques for terrestrial servers
and workstations. IEEE Transactions on Device and Ma-
terials Reliability, 5(3), Sep 2005.

[44] M. Spica and T. Mak. Do we need anything more than
single bit error correction ECC? In International Work-
shop on Memory Technology, Design and Testing, 2004.

[45] J. Srinivasan, et al. The impact of technology scaling on
lifetime reliability. In International Conference on De-
pendable Systems and Networks, Jun 2004.

[46] C. H. Stapper and H. Lee. Synergistic fault-tolerance for
memory chips. IEEE Transactions on Computers,
41(9):1078–1087, Sep 1992.

[47] R. M. Tanner. Fault-tolerant 256k memory designs.
IEEE Transactions on Computers, Apr 1984.

[48] D. Tarjan, S. Thoziyoor, and N. P. Jouppi. Cacti 4.0. HP
Technical Report, Jun 2006.

[49] X. Vera, et al. Reducing soft error vulnerability of data
caches. In The 3rd Workshop on Silicon Errors in Logic-
System Effects, 2007.

[50] T. F. Wenisch, et al. Simflex: Statistical sampling of
computer system simulation. IEEE Micro, 26(4):18–31,
Jul-Aug 2006.

[51] Y. Z. Xu, et al. Process impact on SRAM Alpha-particle
SEU performance. In International Reliability Physics
Symposium, Apr 2004.

[52] J. Yamada, et al. A submicron 1 Mbit dynamic RAM
with a 4-bit-at-a-time built-in ECC circuit. IEEE Journal
of Solid-State Circuits, 19(5):627–633, Oct 1984.

[53] J. F. Zeigler, et all. Accelerated testing for cosmic soft-
error rate. IBM Journal of Research and Development,
40(1):19–39, Jan 1996.

[54] W. Zhang. Enhancing data cache reliability by the addi-
tion of a small fully-associative replication cache. In In-
ternational Conference on Supercomputing, June 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

