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Abstract

Coherence misses in shared-memory multiprocessors
account for a substantial fraction of execution time in many
important scientific and commercial workloads. While store miss
latency can be effectively tolerated using relaxed memory
ordering, load latency to shared data remains a bottleneck.
Current proposals for mitigating coherence misses either reduce
the latency by optimizing the coherence activity (e.g., self-
invalidation) or prefetch specific memory access patterns (e.g.,
strides) but fall short of eliminating the miss latency for
generalized memory access patterns.

This paper presents the novel observation that the order in
which shared data is consumed by one processor is correlated to
the order it was produced by another. We investigate this
phenomenon, called temporal correlation, and demonstrate that it
can be exploited to send Store-ORDered Streams (SORDS) of
shared data from producers to consumers, thereby eliminating
coherent read misses. We present a practical design that uses a set
of cooperating hardware predictors to extract temporal
correlation from shared data, and mechanisms for timely
forwarding of this data. We present results using trace-driven
analysis of full-system cache-coherent distributed shared memory
simulation to show that our SORDS design can eliminate between
36% and 100% of all coherent read misses in scientific workloads
and between 23% and 48% in OLTP workloads.

1. Introduction
Technological advancements in semiconductor fabrication

along with microarchitectural and circuit innovation have led to
phenomenal processor speed increases over the past decades. Over
the same period, memory (and interconnect) speed has not kept
pace with the rapid acceleration of processors, resulting in an ever-
growing processor/memory performance gap. This gap is exacer-
bated in scalable shared-memory multiprocessors, where a cache-
coherent access often requires traversing multiple cache hierar-
chies and sustains several network round-trip times. Adverse
memory access patterns and frequent sharing of data promote
coherence misses to a performance-limiting bottleneck in impor-
tant commercial [22,4,12] and scientific [6,24,21] workloads.

There are a myriad of proposals for reducing or hiding coher-
ence miss latency. Techniques to relax memory order have been
shown to hide virtually all of the coherent write latency [1] by
allowing reads of shared data to bypass in-program-order writes.
Unfortunately, prior proposals have fallen short of hiding coherent
read latency for generalized memory access patterns. Instead,
most proposals seek to reduce read latency through coherence
optimizations [19,23,10] or can hide only part of the latency
[15,11]. Proposals that attempt to hide all read latency through
prefetching/streaming [3] or forwarding [13] are only effective for

simple memory access patterns (i.e., strided accesses). Scientific
[14,21] and commercial [5] workloads, however, often exhibit
irregular yet repetitive memory access patterns that are not
amenable to simple predictive schemes such as stride prediction. 

To hide the coherent read miss latency effectively, a design
must deliver newly produced shared data just-in-time to
consuming nodes. Recent research proposes generalized hardware
prediction mechanisms for identifying when new shared values are
produced [15] and which nodes will consume that data [11,14].
Much as modern branch predictors rely on repetitive program
behavior to predict branch outcomes accurately using prior branch
history, these predictors rely on repetitive memory access patterns
to predict subsequent coherence events. Unfortunately, while these
mechanisms have been shown to accurately predict generalized
memory access patterns, they have only been tested on scientific
[15,14] and desktop/engineering workloads [16]. Moreover, these
predictors fall short of predicting when to forward the data to a
consumer, and thus they are prone to either thrashing the
consumer cache hierarchy (if they forward data early) or failing to
fully hide read latency (if they forward data late). 

Chilimbi [5] recently demonstrated that memory addresses
exhibiting temporal locality at one point in a program recur
together in nearly identical order throughout the program. By
identifying long data reference sequences that recur frequently,
one can form hot streams of references. These streams can then be
fetched in stream order when the stream is accessed, thereby
hiding memory read latency. Unfortunately, extracting repetitive
streams from integer and on-line transaction processing (OLTP)
applications [5] requires a sophisticated hierarchical compression
algorithm to analyze whole program memory address traces,
which may be practical only when run offline and is prohibitively
complex to implement in hardware. 

In this paper we demonstrate for the first time that, in scien-
tific and OLTP workloads, shared data are consumed in
approximately the same order that they were produced. We call
this phenomenon temporal correlation of shared data. Based on
this observation, we present Store-ORDered Streaming (SORDS),
a novel memory system design for just-in-time forwarding of
temporally correlated shared values from producers to consumers.
SORDS builds on existing prediction technology to identify the
order in which shared data are produced and which nodes will
consume them, and proposes novel hardware mechanisms to
record this order and stream shared data to consumers just before
they are needed. By analyzing memory access traces from full-
system simulation [18] of cache-coherent distributed shared-
memory multiprocessors running OLTP workloads with IBM DB2
and scientific applications, we demonstrate:
• Temporal Correlation: We show for the first time that the

order in which shared values are consumed is very similar to the



order in which they are produced, and we present how this
observation can be exploited in memory system design.

• Just-In-Time Streaming: We demonstrate that throttled
streaming of shared values to consumer nodes enables for-
warding into a small, low-latency buffer, thereby maximizing
the potential performance benefits of streaming.

• Practical Design: We propose a first design for store-ordered
streaming with practical hardware mechanisms. Our design
eliminates 36%-100% of coherent read misses in scientific
applications, and 23%-48% in OLTP workloads.

The rest of this paper is organized as follows. In Section 2,
we introduce the approach of store ordered streaming and justify
our approach based on the properties of shared data access
sequences. In Section 3, we present our design for a practical
hardware implementation of SORDS. In Section 4, we evaluate
our SORDS design through a combination of analytic modeling
and trace-based simulation of scientific and OLTP workloads.
Finally, we conclude in Section 5.

2. Store-Ordered Streaming
In this paper, we propose Store-ORDered Streaming

(SORDS), a design for throttled streaming of data from producers
to consumers to hide memory read latency in a distributed
shared-memory (DSM) multiprocessor. SORDS is based on the
key observation that there is temporal correlation between data
produced and subsequently consumed in shared memory: the
order shared values are consumed is similar to the order in which
they were produced. By capturing the order in which data are
produced, SORDS enables throttling the stream of shared data
into small buffers residing at the consumers just-in-time for
consumption, thereby hiding the read miss latency.

A node in a DSM system must obtain exclusive access to a
cache block prior to performing writes. Subsequently, the node
continues to read and write the block until another node in the
system requests access, which causes a downgrade at the writer.
The last store operation to a block prior to downgrade is a
production. The first read of this newly-produced value by each
node is a consumption. If a consumption requires a coherence
request to obtain the data, it is a consumption miss. The goal of
SORDS is to eliminate consumption misses.

Designs that forward memory values from one DSM node
to another prior to a request must include mechanisms to deter-
mine which values to forward, when, and to which nodes?
Figure 1 illustrates an example of how such mechanisms func-
tion in a DSM equipped with SORDS. Existing predictor
technology [15] allows each node to identify productions of a
shared cache block, and write the block back to the directory
node (1). SORDS records the sequence of addresses that arrive at
the directory, in production order, in a large circular buffer called
a stream queue (2). When a request for an address arrives at the
directory, SORDS fills the request, locates the requested cache
block in the stream queue, and forwards a group of subsequent
blocks to the consumer (3). As the consumer hits on forwarded
blocks, it signals the directory to forward additional groups (4).

Successful forwarding depends upon a high degree of
temporal correlation between the production and consumption
sequences. As long as the consumer continues to access blocks

roughly in “store” (i.e., production) order, SORDS can eliminate
the read misses. Intuitively such temporal correlation does exist:
(1) in general, for both data items within and across data struc-
tures [5] — e.g., parent and child nodes in a B-Tree, and (2) in
shared-memory in particular, because synchronization primitives
guard against concurrent accesses to a given set of data items. In
the remainder of this section, we show empirically that there is a
high degree of temporal correlation in scientific and OLTP work-
loads, and justify the major design decisions of SORDS based on
the nature of temporal correlation.

2.1. Methodology & Benchmarks
We demonstrate temporal correlation and evaluate our

proposed SORDS design across a range of scientific and OLTP
applications. We base our results on analysis of full-system
memory traces created using Virtutech Simics [18]. Simics is a
full system simulator that allows functional simulation of
unmodified commercial applications and operating systems. The
simulation models all memory accesses that occur in a real
system, including all OS references. We configure Simics to run
the scientific applications on a simulated 16-node multiprocessor
system running Solaris 8. The processing nodes model SPARC
v9 and the system employs 512MB of main memory. We eval-
uate SORDS with OLTP workloads on Solaris 8 on SPARC and
Red Hat Linux 7.3 on x86. We study DB2 on two platforms
because OS code has a significant impact on database manage-
ment system (DBMS) performance. Moreover, DBMSs use
different code bases across platforms, resulting in diversely
varying synchronization and sharing behavior. We simulate a 16-
node SPARC system and an 8-node x86 system (Simics uses a
BIOS that does not support more than eight processors for x86). 

Table 1 describes the applications we use in this study and
their inputs. We select a representative group of pointer-intensive
and array-based scientific applications: (1) that are scalable to
large data sets, and (2) maintain a high sensitivity to memory
system performance when scaled. These include barnes [24] a
hierarchical N-body simulation, em3d [6] an electromagnetic
force simulation, moldyn [21] a CHARMM-like molecular
dynamics simulation, and ocean [24] current simulation. 

We run version 7.2 of DB2 with the TPC-C workload [17],
an online transaction processing workload. We use a highly opti-
mized toolkit, provided by IBM, to build the TPC-C database and
run the benchmark. This toolkit provides a tuned implementation
of the TPC-C specified queries and ensures that correct indices

Figure 1. Eliminating coherent read misses in SORDS.
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exist for optimal transaction execution. Prior to measurement, we
warm the database until the transaction completion rate in Simics
reaches steady state. We analyze traces of at least 5,000
transactions.

2.2. Stream Properties
In this section, we explore consumption sequence properties

of multiprocessor applications, and identify the streaming mech-
anisms required to eliminate the consumption misses. To gauge
the full potential of streaming, we study it in the context of
“oracle” knowledge of productions and their consumers. We
present practical prediction techniques which approximate these
oracles in Section 3.1.

Just-in-time streaming. Given perfect predictions, the
simplest streaming approach is to forward each shared value
immediately upon production. Such eager forwarding guarantees
that each value arrives at consumers as early as possible, thereby
minimizing the likelihood of incurring a miss penalty. 

Unfortunately, this simple approach often fails because
there is a large number of productions between two consump-
tions. For some applications, buffering these values at the
consumer may require prohibitively large storage. Moreover, the
worst-case storage requirement is highly dependent on applica-
tion sharing behavior. Figure 2 plots the fraction of consumption
misses eliminated as a function of available (fully-associative)
storage at the consumers assuming our oracle model. For em3d,
moldyn, and DB2 Solaris, hundreds to thousands of cache blocks

must be buffered to cover a significant fraction of consumption
misses. For DB2 Linux, similar size storage is required to capture
the full opportunity for eliminating consumption misses. These
results indicate that forwarding data into the conventional cache
hierarchy would be counterproductive because: (1) forwarding
into the L1 cache would thrash it, significantly reducing overall
performance, and (2) forwarding into lower-level caches or the
local DRAM memory [8] would incur a high (local) cache miss
penalty, reducing the gains from forwarding. Similarly, custom
storage would be too expensive both from an implementation
cost and lookup time perspective. Finally, these results are
conservative in that they assume perfect predictors. In practice,
with real predictors, worst-case size requirements may be higher
due to forwarding unwanted data. 

To stream data successfully into a small (e.g., 32-entry)
buffer, the forwarding rate must be throttled to match the
consumption rate. SORDS throttles the rate by forwarding
streams in chunks (i.e., a small group of blocks). When the
consumer first accesses any block in a chunk, it signals SORDS
to forward the next chunk. Thus, at steady state, only two chunks
from each simultaneously live stream need to be stored at the
consumer. The chunk size is selected so as to: (1) capture small
reorderings between the production and consumption sequence,
and (2) overlap consumptions of one chunk with the forwarding
of the subsequent chunk. We address (1) in the following section
and (2) in Section 4.2. 

Temporal correlation. To throttle forwarding, SORDS
must record the order in which to forward. SORDS relies on
strong temporal correlation between the production and
consumption sequences to forward in production order. We
measure temporal correlation by calculating the distance on the
production sequence between two consecutive consumptions.
Thus, a temporal correlation distance of +1 indicates that, for the
two consumptions considered, they appear precisely in produc-
tion order. Larger positive or negative distances indicate that the
consumer has “jumped” from one part of the production
sequence to another. 

We first evaluate the temporal correlation distances of
consumers on the “global” production sequence in Figure 3
(left). The global production sequence has no knowledge of
future consumers and simply records the order in which produc-
tions arrive. These results indicate that an exact match between
the global production and consumption orders is by far the most
common case. An average of 31% of all consumptions precisely
follow global production order. Therefore, there is much oppor-
tunity for throttled streaming even without predicting consumers. 

It is not unusual for an application to interleave production
of shared values for multiple consumers. Splitting the global
production sequence into “local” (i.e., per consumer) sequences
using perfect knowledge of future consumers extracts signifi-
cantly more temporal correlation. Figure 3 (right) depicts the
temporal correlation between each consumption sequence, and
the per-consumer production sequence. A much higher average
of 51% of all consumptions precisely follow the local production
order (compared to global correlation). 

The figure also indicates that there is a large fraction of
consumptions that are only slightly out-of-order with respect to
the global and local production sequences. These reorderings can

Scientific benchmarks

barnes 64K particles., 2.0 subdiv. tol., 10.0 fleaves

em3d 400K nodes, 15% remote, degree 2, span 5

moldyn 19652 molecules, max interactions 2560000

ocean 514x514 grid, 9600 sec

OLTP benchmarks

DB2 Solaris 100 warehouses (10 GB), 96 clients,
450 MB buffer pool, 16 CPUs

DB2 Linux 100 warehouses (10 GB), 96 clients,
360 MB buffer pool, 8 CPUs

TABLE 1. Applications and input parameters.

Figure 2. Cumulative fraction of consumptions 
eliminated as a function of storage size.
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be captured by simply using small chunk sizes. The table in
Figure 3 sums up the coverage for distances that are within four
cache blocks on the local production stream. The figure indicates
that a chunk size of four has the potential to capture anywhere
from 66% to 98% of all consumptions.

In practice, SORDS can exploit both types of temporal
correlation. Upon accurate consumer-set prediction, SORDS can
exploit local correlation where a production’s consumers are
repetitive (as in em3d), and fall back on global temporal correla-
tion when future consumers are less predictable (as in lock-based
applications barnes and DB2). In contrast, eager forwarding
approaches that rely solely on consumer-set prediction have no
recourse when consumer sets are not predictable.

Stream on demand. The graphs in Figure 3 also indicate
that while the majority of the consumptions are covered within a
small distance, the tail of the distance distribution is quite long in
both directions. Therefore, the production sequence is made up
of a number of distinct streams (i.e., consumption subsequences)
that are ordered arbitrarily far apart from each other; the
consumer often jumps between streams on the production
sequence. This result has two key implications. First, simple
credit-based FIFO throttling schemes would not be effective in
streaming data from the production sequence. To supply each
consumer with the appropriate segment of the production
sequence, SORDS must provide random access to the stream
queue (containing the production sequence). Second, streams
should be initiated on demand (upon a miss to a cache block in
the production sequence) to identify the start of the stream (i.e.,
stream head), to forward data just-in-time, and to avoid sending
unwanted data. 

Figure 4 depicts a cumulative breakdown of the fraction of
consumptions belonging to streams of a particular length,
assuming a forwarding chunk size of four. A stream terminates
when it intersects another stream. As the graph shows, streams
are sufficiently long to render the miss to the head a negligible
opportunity loss. DB2 Solaris generally has the shortest streams,
with half of all consumptions on streams shorter than 16 blocks.
Em3d is dominated by very long streams, with nearly 90% of
consumptions on streams greater than 256 cache blocks.

Summary. We showed that, to stream effectively: (1)
forwarding must be throttled, (2) SORDS can throttle data effec-
tively due to the strong temporal correlation between the
production and consumption orders, and (3) SORDS must
provide random access to data on the production sequence to
allow for initiating streams on demand. Based on these results,
we now present a design for SORDS.

3. A Design For Store-Ordered Streaming
In Section 2 we present an overview of how SORDS elimi-

nates coherent read misses, and analyze the temporal correlation
property on which SORDS relies and its implications on the
SORDS design. In this section, we present our design for a prac-
tical hardware implementation of SORDS.

To support scalable systems, the SORDS functionality must
be distributed across all DSM nodes, much like a distributed
directory scheme. The SORDS hardware at each node records
the production order for shared values and forwards streams of
these values to consumers. Its function comprises five steps:
1. Predict which stores produce shared values and forward 

these values to the directory.
2. Predict the set of consumers for each production.
3. Append the block’s address to the end of stream queues for 

each predicted consumer.
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4. Upon a demand miss, locate the missing address in the 
stream queue and forward a chunk starting at this location.

5. Upon a hit in a consumer’s forward buffer, notify the stream 
engine to forward the next chunk.
Figure 5 depicts the hardware components which SORDS

adds to a base DSM node. The numbers in the figure indicate
roughly which of the steps above each component participates in.
A DownGrade Predictor (DGP) at each processor approximates
the production oracle discussed in Section 2.2. It predicts the last
store to a cache block prior to a subsequent consumer miss, self-
downgrades the cache block, and writes back the produced data
to main memory (1). A Consumer Set Predictor (CSP) located in
the directory approximates the consumer-set oracle discussed in
Section 2.2. When a self-downgraded block arrives at main
memory, CSP predicts which nodes will request shared copies of
it (2). The operation of DGP and CSP is described in Section 3.1. 

Once CSP has predicted a set of consumers, the Stream
Engine (SE) records the address of the produced block on one or
more stream queues (3) located in main memory. When a
consumer later requests this block, the SE accesses the stream
queue and begins forwarding the stream from that location (4).
At the consumer node, forwarded values are stored in a Forward
Buffer (FB) that is accessed in parallel with the data caches of the
CPU. When a load hits in the FB, the data is transferred to the L1
data cache, and, if necessary, a hit notification is sent to the
producer’s SE requesting more data from the stream. Section 3.2
details the data structures and operation of the SE and FB.

3.1. Predicting Productions & Consumer Sets
Computer architecture literature contains extensive studies

for predicting when shared values are produced, and which nodes
will subsequently consume those values [15,14,11,16]. We iden-
tified and tuned the most promising of these proposals to
cooperate with our SORDS streaming mechanism.

The goal of DGP is to identify productions. Our DGP is
based on Last-Touch Prediction (LTP) [15]. It reduces
complexity and storage cost as compared to LTP because it only
records stores (rather than both loads and stores), and predicts
only downgrades (rather than both invalidations and down-
grades). DGP associates the downgrade event for a production
with the sequence of store instructions which access the block,
from the time the block is first modified until the last store prior
to its downgrade. As store instructions are processed, the DGP

hardware encodes the PCs into a trace for each block in the
cache. The current trace is entered into a signature table when a
downgrade occurs. If the new trace signature calculated for a
block upon a store is present in the table, the DGP triggers a self-
downgrade of the block. Thus, DGP captures program behaviors
which repetitively lead to productions.

The goal of CSP is to predict the consumers of each produc-
tion. Our base CSP is derived from the Memory Sharing
Predictor (MSP) [14]. It reduces complexity and storage cost as
compared to MSP because it only predicts readers (rather than
both readers and writes). The intuition underlying CSP is that the
pattern by which values move between nodes, although arbi-
trarily complex, is repetitious. CSP maintains a history of the
most recent sharing pattern (producers and consumer sets) for
each block in the directory. CSP associates the set of consumers
of a production with the history that led to the production, and
stores this association in a signature table. Upon a production,
CSP uses the current history for the block to obtain a predicted
set of consumers from the table. CSP maintains a confidence for
every signature and only predicts consumers if this confidence is
high (if the signature and subsequent consumer set has recurred).

To gauge SORDS’ coverage sensitivity to consumer-set
prediction accuracy, in Section 4 we also evaluate a simple
sharing predictor, LastMask, that uses the last consumer set at the
directory as a prediction for future consumers. 

3.2. Mechanisms for Streaming
The SORDS Stream Engine (SE) is designed to provide the

functionality identified as necessary in Section 2.2 to exploit
both global and local temporal correlation. This section details
the functionality of the SE and its associated data structures. 

The SE records the sequence in which DGP-downgraded
blocks arrive at the directory. Potentially thousands of values
may be produced before any are consumed, resulting in large
stream queues. Thus, the data structures pertaining to stream
queues are stored in a private region of DRAM at each node and
a cache is used to accelerate accesses [20].

Figure 6 (left) depicts the layout of the SE’s private memory
space. The space is divided into two main structures: a set of
stream queues (the majority of storage), and a block indirection
table. The stream queues are circular queues which store lists of
cache block addresses in production order. The stream queue
storage is divided into separate regions for each producer node in
the system. The stream queues within each region record produc-
tions by a single producer node, and they are comprised of one
private stream queue for each consumer node, and one additional
global queue. Each stream queue entry consists of a block
address, and a consumer bit mask indicating if the block has been
forwarded to that consumer. Thus, each entry is roughly the same
size as a memory address. In a 16-node system, there are 17
stream queues within each of the 16 producer regions.

Figure 6 (center) depicts the operation of the SE when a
DGP-triggered self-downgrade arrives. The SE obtains a CSP
prediction for the produced block. If a consumer set is not
predicted (e.g., because of low confidence or because the sharing
history has never been encountered before), the production
address is appended to the global stream queue. To facilitate fast
stream lookup, the SE also records the index of the stream queue

Figure 5.  Anatomy of a SORDS-based DSM node.
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entry in a stream pointer field stored with the block’s directory
information. If CSP predicts a consumer set, the production
address is appended to each consumer’s private stream queue. To
support rapid lookup for all occurrences of the address, the SE
creates a linked list within the block indirection table pointing to
all private stream queue locations of the block. The head of this
linked list records a bit mask indicating the consumer stream
queues in which the address appears. The SE also updates the
stream pointer to point to the list head. The directory overhead of
the stream pointer is log2(max entries on stream queue) + 1 bits.
We analyze the storage requirement of stream queues in
Section 4.4. 

Figure 6 (right) depicts the operation of the SE upon receipt
of a read miss at the directory. If the stream pointer for the block
is initialized, the coherence engine passes the requested address,
identity of the requesting node, and the stream pointer to the SE
for processing. The SE uses the stream pointer to quickly deter-
mine which stream queues contain the block. If it is present on a
stream queue for this consumer, it forwards data from the
addresses consecutively following it in the stream, and marks all
forwarded blocks as sent to the consumer. The number of blocks
to forward is determined by the chunk size parameter of the
SORDS design (see Section 4.4) Forwarding terminates at any
block that has been invalidated or already forwarded to the
consumer. When a node acquires write permission for a block,
the SE invalidates existing stream queue entries for its address,
because the value they represent is no longer the most recent for
this address in the system. 

Each consumer stores blocks in its Forward Buffer, a small
fully-associative buffer with LRU replacement. The buffer stores
block addresses, values, and the stream context. The stream
context is composed of the identity of the forwarding SE, an
identifier for the associated stream queue, and a stream queue
pointer indicating from where forwarding should continue. Upon
a hit in the FB, a hit notification containing the stream context is
sent to the SE which uses it to locate the next blocks to forward.
The advantage of this approach is that the SE does not need to
track live streams—each consumer supplies the necessary state
with each hit notification. Thus, the number of parallel streams is
limited only by storage constraints at the consumer. Note that

upon a hit, other blocks in the FB from the same chunk are
flagged to avoid duplicate hit notifications.

4. Results

4.1. Speedup Opportunity
In this section, we present a simple and intuitive model to

gauge the performance improvement resulting from SORDS. In
the interest of brevity and to gauge the maximum speedup oppor-
tunity using SORDS, we make a number of simplifying
assumptions without loss of generality. First, we assume that all
coherent write miss latency is hidden through a software-anno-
tated [1] or hardware-speculative relaxed memory system [9].
Second, we assume that the applications are latency- and not
bandwidth-bound. Prior research indicates that OLTP workloads’
execution time is dominated by long chains of dependent
memory accesses and therefore latency-bound [2,22]. Many
pointer-intensive scientific applications (e.g., barnes, em3d [16]
and moldyn [21]) exhibit similar memory dependence behavior
and are also latency-bound. Consequently, we assume that
coherent read misses are on the execution’s critical path, and
there is sufficient bandwidth in the interconnect and memory
system for streaming with little impact on queueing and
occupancy. 

We model the performance of a base DSM system with a
three-hop coherence protocol as the sum of an application-
specific per-node CPI (accounting for execution stalls in the
microarchitecture and the memory hierarchy), and the additional
latency caused by coherent read misses (consumptions), as miss
per instruction, M, multiplied by the round-trip latency per
consumption, L as follows:

We model a SORDS-based DSM accounting for the fraction
of consumptions whose latency can not be entirely hidden by
SORDS. There are three classes of such consumptions: (1) those
whose productions are not successfully downgraded by the DGP,
(2) those whose productions are downgraded but are not
forwarded to the consumers, and (3) those that are forwarded but
are not timely. In the first case, SORDS incurs a full round-trip
latency. We conservatively assume that the latter two cases incur

Figure 6.  Stream Engine data structures and processing. The left-most figure depicts the data structures the SE stores 
in memory. The center and right-most figure depict the SE processing a production and demand miss, respectively.
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the full latency of fetching the production from the directory.
This penalty is 2/3 of that of a full round-trip latency because the
downgrade converts the 3-hop transaction for the read into a 2-
hop transaction to the directory.

Let fSORDS denote the fraction of consumptions that are
successfully eliminated (i.e., correctly predicted and forwarded
just-in-time). Let fDGP denote the fraction of consumptions
whose production is successfully predicted. Our model for the
CPI of a SORDS-based system is:

By dividing the two terms to obtain speedup, and rear-
ranging we end up with: 

We plug in IPC values based on published results for
uniprocessor OLTP [2] and scientific workload [7] measurements
on Pentium III and Alpha 21364 processors respectively. These
results suggest an IPC of 0.4 for OLTP workloads and an IPC of
1.4 for scientific workloads. Table 2 lists the measured consump-
tion miss rate (per 10000 instructions) for our applications. We
conservatively assume an aggressive 3-hop round-trip latency for
a coherent read miss of 150ns (a network traversal in an HP
GS1280 Alphaserver with no memory access overhead), or 750
cycles for a 5 GHz processor. 

Figure 7 (left) plots the base speedup results for the OLTP
with M=50 misses per 10K instructions and scientific workloads
with both M=5 and M=50 per 10K instructions. These results
indicate that for scientific applications with high miss rates (e.g.,
em3d), there is a huge potential for performance improvement of
over 5x using SORDS. However, the potential speedup signifi-
cantly drops to only 1.5x at best with an order magnitude
decrease in the miss rate (e.g., to values close to those of barnes,
moldyn, and ocean). The OLTP workloads also show a huge
speedup potential of up to 2.5x due to their high miss rate. Their
speedup potential is lower as compared to em3d due to the
overall low IPC (because of bottlenecks such as the local instruc-
tion and data cache misses, branch misprediction, and other
pipeline dependence stalls [2]). Moreover, the speedup is expo-
nential with respect to SORDS coverage and as such depends on
the prediction accuracy and timeliness of the SORDS
mechanisms. 

Figure 7 (center) depicts performance sensitivity to round-
trip latency for OLTP workloads with IPC=0.4 and M=50/10K
and scientific workloads with IPC=1.4 and M=5/10K. These
results indicate that because of high miss rates in OLTP work-
loads, an increase in system size and round-trip latency will have
a much higher impact on their overall speedup opportunity using
SORDS than it does on one of our typical scientific workload. 

Finally, Figure 7 (right) compares performance sensitivity
to DGP and SORDS coverage for the OLTP workloads
(IPC=0.4) with varying miss rates and our base latency (L=750).
The results indicate that while the maximum performance impact
comes from high SORDS coverage, there is potential for
moderate performance improvements (~1.5x) even when
SORDS coverage is as low as 30% but DGP coverage is high
(90%). However, speedup exhibits a logarithmic behavior with
an increase in miss rate. Therefore, because downgraded produc-
tions that are not successfully forwarded incur 2/3 of the round-
trip latency, with larger system sizes and higher miss rates, large
speedup gains are not possible with high DGP coverage alone.

4.2. Chunk Size & Forwarding Lookahead
The primary role of the SORDS chunk size parameter is to

ensure that the consumer node does not stall waiting for
forwarded data while consuming a long stream. SORDS incurs a
full network round-trip latency each time the consumer requests
forwarding of the next stream chunk. When successive consump-
tions are clustered together in bursts, there is insufficient time to
forward each block individually. In order for SORDS to be effec-
tive, we must select a chunk size that is sufficiently large to
supply enough data to satisfy typical bursts of consumptions.
However, if we choose too large a chunk size, storage at the
consumer is wasted and fewer streams can be followed in
parallel. Thus, selecting a chunk size involves balancing storage
requirements at the consumer and overlapping the round-trip
messaging delay of forwarding during consumption bursts.

We analyzed each of our workloads to find the typical bursts
of consumptions that must be overlapped for various forwarding
delays. We measure forwarding delay in instructions executed at

CPISORDS CPI M· L 1 fDGP–( ) 2
3---M L fDGP f– SORDS( )⋅ ⋅+⋅ ⋅+=

speedup
CPIbase

CPISORDS
----------------------------   =

 
1 IPC M L⋅⋅+

1 IPC M L 1 fDGP–( ) 2
3
---IPC M L fDGP fSORDS–( )⋅ ⋅ ⋅+⋅ ⋅ ⋅+

------------------------------------------------------------------------------------------------------------------------------------------------------------=

Figure 7.  Model of SORDS performance impact. Each plot shows speedup from SORDS as we vary model parameters.

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90 100

Sp
ee

du
p

M x 10K (remote misses per 10K instructions)

fDGP=0.9, fSORDS=0.8
fDGP=0.6, fSORDS=0.5
fDGP=0.9, fSORDS=0.3
fDGP=0.6, fSORDS=0.2

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

0 0.2 0.4 0.6 0.8 1

Sp
ee

du
p

fDGP=fSORDS

IPC=1.4 (Sci.) M=50/10K
IPC=0.4 (OLTP) M=50/10K
IPC=1.4 (Sci.) M= 5/10K

1
1.5

2
2.5

3
3.5

4
4.5

5

0 0.2 0.4 0.6 0.8 1

Sp
ee

du
p

fDGP=fSORDS

L=1500, M=50/10K, IPC=0.4
L= 750, M=50/10K, IPC=0.4
L=1500, M= 5/10K, IPC=1.4
L= 750, M= 5/10K, IPC=1.4

ba
rn

es

em
3d

m
ol

dy
n

oc
ea

n

D
B2

 S
ol

ar
is

D
B2

 L
in

ux

M / 10K instructions 2.1 84 3.7 4.1 57 36

TABLE 2. Coherent read miss rates in applications.
7



the consumer to remain independent of microarchitecture and
cache configuration. For each forwarding delay, we measure how
many consumptions on average occur within one forwarding
window for all windows containing a burst of more than one
consumption. Figure 8 shows the results of this analysis. The
required chunk size for an application depends on its IPC and the
round-trip network latency. For a 2-hop round-trip network
latency of 500 cycles and an IPC of 0.4 for the OLTP workloads
[2], a round-trip corresponds to 200 instructions. For this design
point, Figure 8 shows that a chunk size of four will fully overlap
the consumption bursts. For a typical scientific benchmark IPC
of 1.4 [7], Figure 8 shows that a chunk size of four to six will
fully overlap the consumption bursts for all scientific applica-
tions except for ocean.

The version of ocean we study (taken from [24]) is an
enhanced version of the original benchmark that uses sub-
blocking to improve the communication to computation ratio.
Sub-blocking has the effect of grouping all the consumptions of a
sub-block into a single burst. This optimization is counterproduc-
tive with SORDS, since SORDS will ensure a steady stream of
blocks even if consumptions are evenly spaced. However, even if
SORDS cannot fully overlap all consumptions for ocean, it will
still improve performance by reducing the number of misses to
one per chunk.

4.3. Predictor Results
SORDS depends upon accurate prediction of productions,

and benefits greatly from accurate prediction of the consumer set
for each production. Table 3 presents the coverage and mispre-
diction rate of our production predictor (DGP), and two
alternative sharing prediction techniques. CSP is the sophisti-
cated sharing predictor described in Section 3.1. LastMask is a
simple sharing predictor that predicts the consumer set for a new
production will match the final consumer set of the previous
production.

Our DGP results corroborate previously published results
on instruction-trace based invalidation prediction for scientific
applications [15]. Our study indicates that instruction-trace-
based prediction is effective for OLTP applications as well. The
higher rate of DGP mispredictions for OLTP applications will
not degrade performance if a relaxed memory system [1,9] is

employed, since the additional write misses from DGP mispre-
dictions can be fully overlapped.

The history-based CSP sharing predictor equals or outper-
forms simple last mask prediction across applications. For the
scientific applications with stable and highly repetitive sharing
patterns (em3d, moldyn, ocean), CSP predicts nearly all sharers
correctly, with virtually no mispredictions. In the lock-based
applications (barnes, DB2) where sharing patterns change
frequently, CSP predicts conservatively, while last mask often
predicts an incorrect sharing list. CSP’s confidence mechanism
gives it an advantage over last mask for these applications.

4.4. SORDS Design Space
We performed an analysis of the storage requirements for

SORDS stream queues, and found that increasing storage beyond
2048 entries per stream queue had little effect on any application.
With fewer entries, coverage drops off rapidly. With 2048
entries, the total storage required at each node for a 16-node
system is roughly 5.5 MB (17 stream queues for each of 16
producers; up to 10 bytes per entry). This is large enough to
prevent SORDS from using on-chip SRAM for stream queues,
but is a negligible fraction of main memory.

Section 4.2 examines SORDS chunk size and determines
that between four to six blocks are required to overlap the round-
trip latency of forwarding. Chunk size also affects SORDS
coverage and discards. Increasing chunk size with a fixed storage
at the consumer reduces the number of streams that can be stored
in parallel, which increases the likelihood of replacing useful but
as yet unconsumed blocks. Because of this effect, we have found
that sending only a single head block upon creation of a new
stream is effective at reducing the number of replaced blocks,
without sacrificing much coverage. When the head block is
consumed, we forward the remainder of long streams using the
chunk size derived in Section 4.2.

Figure 9 presents SORDS results for a variety of forwarding
chunk designs, demonstrating the effect of this optimization.
These results use CSP as the sharing predictor. Coverage is the
fraction of all consumptions that SORDS eliminates. Discards
are blocks that were forwarded to a consumer but never used—
either the forwarding buffer evicted the block or it was invali-
dated because of a write by another processor. First, the graph
shows that SORDS is very effective at eliminating nearly all
consumptions for the applications where CSP is highly effective
(em3d, moldyn, ocean) and SORDS can exploit local temporal
correlation. In moldyn, there is a phase of execution that is char-

Figure 8.  Required chunk size as a function of 
stream round-trip fetch time.
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acterized by many parallel, short streams. This phase causes the
~20% gap between SORDS coverage and moldyn’s perfect CSP
coverage. For the lock-based applications, where CSP is less
effective, SORDS still eliminates 25% to 50% of coherence
misses. Second, Figure 9 shows that our head block optimization
is effective at reducing discards. Only moldyn suffers from the
optimization, again because of its frequent short streams.

Figure 10 evaluates SORDS across sharing predictors.
Mask refers to the last sharing mask prediction technique. For
applications where sharing prediction is effective, SORDS sees
considerable advantage from being able to exploit local rather
than global temporal correlation. In barnes, where consumers are
generally unpredictable, the high discard rate for the None result
shows that forwarding from the global stream queue causes many
discards. Global temporal correlation is relatively poor for
barnes (see Figure 3). The last mask prediction technique never
places blocks on the global stream queue, since last mask always
predicts a set of consumers. CSP, however, will not predict
sharers if prediction confidence is low. Thus, CSP exhibits a
similar, though smaller, discard effect as seen without a sharing
predictor. In DB2 Linux, coverage without a sharing predictor is
slightly higher than CSP, as non-predicted consumers are able to
find long streams on the global stream queue. However,
removing the sharing predictor doubles discards.

Figure 11 presents a breakdown of SORDS hits and oppor-
tunity in user and OS code for our OLTP workloads. SORDS is
more successful at predicting consumptions by the database than
the OS. This graph also reveals a significant difference in the
relative volume of OS and user sharing across platforms.

4.5. Comparison to Alternative Techniques
Figure 12 compares our final SORDS design with two other

techniques for eliminating coherent read misses. Eager shares
DGP and CSP with SORDS, but forwards produced blocks to
predicted consumers immediately upon production. Stride is an
adaptive stride prefetcher that examines memory patterns at the
directory for strided accesses. When a stride is located, the
prefetcher sends the next four blocks along the stride. SORDS
and Eager are each considered for two different forward buffer
sizes (4K and 16K).

SORDS is clearly superior to eager forwarding. Eager
forwards data prematurely and thrashes the consumer’s small
forward buffer, leading to high discard rates in em3d, moldyn,
and ocean. In cases where CSP makes very few predictions,
eager forwarding sends few blocks resulting in both low
coverage and low discards.

SORDS is also superior to stride-based prefetching, in both
coverage and discards. Stride always results in many discards
since it is incapable of throttling. The access patterns in em3d
and ocean are not strided. SORDS provides about 10% more
coverage for DB2, and 20% more for moldyn. Coverage is
similar for barnes. For DB2 Linux and barnes SORDS coverage
is limited by the difficulty of sharing prediction, which does not
limit the stride prefetcher.

SORDS is relatively insensitive to the size of the
consumer’s forward buffer. Since there are few streams followed
in parallel, and throttling limits occupancy at the buffer, 4K of
storage is sufficient. Moldyn is the exception, again because of its
many parallel streams that put significant pressure on the forward
buffer during bursts of activity. Eager forwarding is more sensi-
tive to buffer size, since the forward buffer must contain all
produced but unconsumed values.

Figure 9.  SORDS sensitivity to forwarding chunk size. Each forwarding chunk design is listed as x-y. x refers to the size 
of the head chunk sent upon a demand miss, y refers to the body chunk size sent in reply to a hit notification.

216 234

0%

50%

100%

150%

200%

 1
-1

 1
-4

 1
-6

 1
-8

 6
-6

 1
-1

 1
-4

 1
-6

 1
-8

 6
-6

 1
-1

 1
-4

 1
-6

 1
-8

 6
-6

 1
-1

 1
-4

 1
-6

 1
-8

 6
-6

 1
-1

 1
-4

 1
-6

 1
-8

 4
-4

 1
-1

 1
-4

 1
-6

 1
-8

 4
-4

barnes em3d moldyn ocean DB2 Solaris DB2 Linux

%
 o

f C
on

su
m

pt
io

ns Coverage Training Discards
216 285

Figure 10.  SORDS with various sharing predictors.

0%

50%

100%

150%

N
on

e
M

as
k

C
SP

N
on

e
M

as
k

C
SP

N
on

e
M

as
k

C
SP

N
on

e
M

as
k

C
SP

N
on

e
M

as
k

C
SP

N
on

e
M

as
k

C
SP

barnes em3d moldyn ocean DB2
Solaris

DB2
Linux

Coverage Training Discards187 171 113

0
20
40
60
80

100

Solaris Linux Solaris Linux

Hits Consumptions

C
on

su
m

pt
io

ns
 %

Cons. User
Cons. OS
Misses
Hits User
Hits OS

Figure 11.  DB2 OS and user behavior.
9



5. Conclusion.
In this paper, we presented SORDS, a novel hardware

design for eliminating coherent read misses in distributed shared-
memory machines. We demonstrated the phenomenon of
temporal correlation—similarity between the production and
consumption order—and showed how to exploit this to improve
performance. We demonstrated that throttled streaming is essen-
tial for eliminating a large fraction of coherence misses with
minimal storage. We introduced a first design for SORDS
comprising: DGP to identify downgrades; CSP to predict subse-
quent consumers; and a Stream Engine to stream data at the rate
of consumption. We evaluated this design, and presented results
that SORDS eliminates 36%-100% of coherent read misses in
scientific, and 23%-48% in OLTP workloads.
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Figure 12.  SORDS compared to alternative techniques for eliminating consumption misses. The “S x-y z” bars 
represent SORDS with a head chunk of x, a body chunk of y, and a forward buffer of z bytes. The “E z” bars refer to eager 

forwarding with a forward buffer of z bytes. The “stride” bar refers to stride-based prediction.
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