
Cashmere-VLM:
Remote Memory Paging for Software Distributed Shared Memory �

Sandhya Dwarkadasz, Nikolaos Hardavellasy, Leonidas Kontothanassisy,
Rishiyur Nikhily, and Robert Stetsz

y Compaq Cambridge Research Lab z Department of Computer Science
One Kendall Sq.. Bldg 700 University of Rochester

Cambridge, MA, 02139 Rochester, NY, 14627
fkthanasi,nikhilg@crl.dec.com fsandhya,stetsg@cs.rochester.edu

nikos@eng.pko.dec.com

Abstract

Software distributed shared memory (DSM) systems have
successfully provided the illusion of shared memory on dis-
tributed memory machines. However, most software DSM
systems use the main memory of each machine as a level in
a cache hierarchy, replicating copies of shared data in local
memory. Since computer memories tend to be much larger
than caches, DSM systems have largely ignored memory ca-
pacity issues, assuming there is always enough space in main
memory in which to replicate data. Applications that access
data that exceeds the capacity available in local memory will
page to disk, resulting in reduced performance. We have
developed a software DSM system based on Cashmere that
takes advantage of system-wide memory resources in order
to reduce or eliminate paging overhead. Experimental re-
sults on a 4-node, 16-processor AlphaServer system demon-
strate the improvement in performance using the enhanced
software DSM system for applications with large data sets.

1 Introduction

Shared memory is generally considered an attractive
programming model that is readily available on symmet-
ric shared-memory multiprocessors (SMPs). Software dis-
tributed shared memory (DSM) systems running on clusters
of SMPs successfully extend the shared memory environ-
ment across nodes in the cluster for a large number of ap-
plications, providing an easy path to larger scale multipro-
cessing.

Most software DSM systems [2, 13, 15] use the main
memory of each node in the cluster as a level in the cache hi-
erarchy, and migrate and replicate data in that memory. Since
computer memories tend to be much larger than caches,
DSM systems have largely ignored memory capacity issues,

�This work was supported in part by NSF grants CDA–9401142, CCR–
9702466, and CCR–9705594; and an external research grant from Compaq
Computer Corporation.

assuming there is always enough space in main memory into
which to replicate data and avoid remote access. Applica-
tions that access data that exceeds the capacity available in
local memory will page to disk, reducing performance.

We have designed a new protocol, based on the Cashmere
software DSM system [15], that attempts to maximize the
use of all the memory available in a cluster. The key insight
behind the protocol is that while a node may access a larger
amount of memory than it has locally, the active working
set is likely to be smaller than the amount of local memory.
Paging from disk can be an order of magnitude slower than
paging across a network. We have therefore augmented our
protocol to take advantage of the inherent data replication in
a software DSM system. When possible, disk paging is thus
avoided, or replaced with network paging.

We have implemented the protocol on a cluster of Al-
phaServers connected by a Memory Channel network. Ex-
perimental results show that the new protocol outperforms
the base protocol by as much as a factor of 1.58 for our
test applications running with high memory pressure. In the
absence of memory pressure, the protocol imposes minimal
(�3% on average) overhead when compared to a protocol
that does not attempt to evict coherence blocks. Eviction-
capable DSM protocols add an important dimension to the
scalability of clusters, making them more attractive as com-
pute servers for very large applications.

2 Protocol Description

We begin this section with a description of our base pro-
tocol, and follow it by a description of the eviction enhance-
ments.

2.1 Base Cashmere-2L Protocol

Our base protocol, Cashmere-2L (CSM) [15], is a page-
based software DSM system that has been designed for SMP
clusters connected via a remote-memory-write network. The
system implements a multiple-writer, lazy release consistent



protocol, and requires applications to adhere to the data-
race-free, or properly-labeled, programming model [1]. The
consistency model implementation lies in between those of
TreadMarks [2] and Munin [3]. Invalidations in CSM are
sent during a release and take effect at the time of the next
acquire, regardless of whether they are causally related to the
acquired lock.

Low-latency remote-write networks, such as Compaq’s
Memory Channel [9], allow processors in one node to mod-
ify the memory of another node safely from user space, with
very low (microsecond) latency. CSM uses the broadcast
capabilities of the Memory Channel network to maintain
a replicated directory of sharing information for each page
(i.e., each node maintains a complete copy of the directory).
The directory is examined and updated during protocol ac-
tions. Initially, shared pages are mapped only on their asso-
ciated home nodes. Page faults are used to trigger requests
for an up-to-date copy of the page from the home node. Page
faults triggered by write accesses are also used to keep track
of data modified by each node. At the time of a write fault,
the page is added to a per-processor dirty list (a list of all
pages modified by a processor since the last release). If the
home node is not actively writing the page, then the home
node is also migrated to the current writer by simply mod-
ifying the directory to point to the new home node. As an
optimization, we also move the page into exclusive mode if
there are no other sharers, and avoid adding the page to the
per-processor dirty list. If the page is not in exclusive mode
and the faulting processor is not on the home node, a twin (or
pristine copy of the page) is created. The twin is later used
to determine local modifications.

At a release, each page in the dirty list is compared to its
twin, and the differences are flushed to the home node. Af-
ter flushing the differences, the releaser sends write notices
(notifications of a page having been modified) to the sharers
of each dirty page, as indicated by the page’s directory en-
try. Finally, the releaser downgrades write permissions for
the dirty pages and clears the list. At a subsequent acquire, a
processor invalidates all pages for which write notices have
been received, and which have not already been updated by
another processor on the node.

The protocol exploits hardware coherence to maintain
consistency within each SMP node. All processors in the
node share the same physical frame for a shared data page.
Hardware coherence then allows protocol transactions from
different processors on the same node to be coalesced, re-
sulting in reduced data communication, as well as reduced
consistency overhead. One of the novelties in the base pro-
tocol (compared to other SMP-aware page-based schemes)
is that TLB shootdown is avoided by using twins and diffs
on both incoming and outgoing page-update operations. The
use of diffs on incoming page updates allows a node to up-
date regions of the page that were modified by a remote node
without overwriting changes being made simultaneously by
a local process. The correctness of this approach depends

on the assumption that programs are data-race-free. A de-
tailed description of the base protocol including the shoot-
down avoidance mechanism can be found in [15].

2.2 Eviction Extensions

Paging from disk can be an order of magnitude slower
than paging across a network. Our eviction extensions at-
tempt to replace disk paging with network paging. Also, our
extensions take advantage of the inherent data replication in
a software DSM system to avoid paging of any type when-
ever possible.

Our new protocol (termed Cashmere-VLM (CSM-VLM)
which stands for Cashmere - Very Large Memory)
is currently implemented completely at user-level. In order
to exercise paging across the network rather than to disk, we
need to determine several parameters: an estimate of mem-
ory usage and availability �, the sharing status of each page
of shared data, and the last reference timestamp on the page.
Both the sharing status of a page and the last reference times-
tamp are important in order to minimize the overhead of pag-
ing.

Currently, the maximum available physical memory is de-
termined at the start of the program. Each node tracks mem-
ory usage through a local counter representing the number of
resident shared pages. The counter is incremented when the
node references a non-resident page, and decremented when
the node evicts a page.

This memory usage is examined at every page fault and
at every entrance to a barrier or lock acquire. If the memory
usage exceeds a certain percentage of the available physical
memory, the protocol invokes the network paging routines to
free physical memory and avoid possible paging to disk. The
following section details the policy used by these routines to
select a page for eviction.

2.2.1 Eviction Algorithm

Our protocol takes advantage of DSM knowledge in order to
minimize the cost of evicting pages from a node. Each page
on a node is placed in one of four categories, and then treated
appropriately by the protocol:

Exclusive pages: There is only a single copy of this type of
page, and the node on which it resides is the home, with read
and write access. No replicas exist on other nodes. Exclusive
pages are never selected as eviction victims. By definition,
they are pages used only by the single node and thus eviction
is unlikely to be of benefit unless the node is using a dispro-
portionate amount of memory resources. Furthermore, these
pages would have to be transitioned out of exclusive mode
before they can be evicted. This transition can be an expen-
sive operation, sometimes requiring synchronization among
all processes within a node.

�Kernel hooks for more accurate estimation could greatly improve
performance.



Home pages: These are pages for which the node is the
home node, but for which other sharers may exist. To evict
these pages, a new home node must be chosen through nego-
tiation. Then the current contents of the page must be sent to
the new home, in order to ensure consistency. The transfer to
a new home is a complex operation since other asynchronous
operations may be taking place in the system with respect to
that page. We ensure that no processor within the SMP is ac-
cessing the page by acquiring an intra-node lock that ensures
exclusive access to that page’s meta-data within the node.
Inter-node exclusive access is harder to achieve since inter-
node locks are more expensive, and we want to make sure
to leave the common case unaffected. We use the distributed
shared directory space to ensure inter-node exclusive access.
Certain bits in the directory are reserved to indicate the ex-
istence of in-progress operations (i.e., page fetches, or diff
applications), while an additional bit is used to indicate that
an eviction event is under way. When a process decides to
evict a home page, it sets the eviction bit and waits for all
page-fetch and diff-related bits to clear. To avoid deadlock
and resolve races, we have made evictions the highest pri-
ority event. Page-fetch and diff operations will backoff in
the presence of evictions unless they are already under way.
Should a fetch/diff and eviction request arrive at the direc-
tory at the same time, the fetch/diff request will back off and
wait for the eviction to complete. Livelock, however, is still
possible, since a page may be evicted from node to node,
forcing a fetch/diff request to back off all the time. To mini-
mize the chance of livelock, newly evicted pages are placed
at the tail of a LRU queue, making them unlikely candidates
for eviction in their new home.

Read-write pages: Such pages have been replicated and
subsequently modified in the node. Before eviction, the
modifications must be flushed to the home node, and then
other sharing nodes must be notified of the write event.

Read-only and Invalid pages: Such pages have been
replicated in read-only mode in the node or have been in-
validated by all processors on the node. Furthermore, an up-
to-date copy of the page exists in the home node, and thus it
can be dropped safely without requiring any communication.

Based on these categories, the protocol maintains three
separate page lists: the Exclusive, Replica, and Home lists.
The Exclusive and Home lists are self-explanatory. The
Replica list includes the read-write, read-only, and invalid
pages — pages for which a replica exists on another node.
On each page fault, a page is timestamped with a local logi-
cal clock value and moved into the appropriate list. The lists
are maintained in order according to the timestamp values,
with the head of each list representing the least recently used
page.

Also, during a page fault, the protocol examines the cur-
rent memory usage level and will attempt a page eviction
if necessary. The eviction policy considers both the page’s
sharing state and the access timestamp within the node. As

mentioned above, Exclusive pages are never selected for
eviction since they are only in use on one node. The evic-
tion candidate is chosen from the head of either the Replica
or the Home list. The protocol compares the timestamps of
the pages at the head of the lists and selects the page with the
smaller (i.e., older) access timestamp. In practice, a thresh-
old is applied so that Replica pages are favored, since the
eviction mechanism for replicas is less expensive than for
home pages.

In addition to a full page transfer, a home page eviction
requires some negotiation. Before assigning a new home
node, the evicting node must first verify that a candidate node
has enough free physical memory. This requires a round-trip
message. If the candidate does not have enough free mem-
ory, then the evicting node must query another node. This
communication can make the eviction mechanism rather ex-
pensive. Also, if a suitable home node candidate can not
be found, the eviction will simply fail and the system will
default to standard disk paging. On the other hand, pages
from the replica list can be evicted with little (for read-write
pages) or no (for invalid or read-only pages) communication.
All the node has to do is write back any pending modifica-
tions and then drop the page.

Reclaiming physical memory is achieved through re-use
of shared memory segments. Shared memory within each
SMP is allocated using the shmget call and mapped into the
application address space with the shmat call. Rather than
destroying and recreating the segments (both relatively ex-
pensive operations under Tru64 Unix), we simply detach the
segment from the application’s address space (using shmdt)
and then re-map the segment into a different portion of the
application’s address space, thereby re-using the same phys-
ical space for a different virtual address region. One final
issue that must be addressed is the fact that before an evic-
tion can complete, all node processes must drop the shared
mapping. Unfortunately the only way to notify other node
processes of the eviction event is through explicit messages
that increase synchrony within a node.

3 Experimental Results

Our experimental environment consists of four Compaq
AlphaServer 2100 4/233 computers. Each AlphaServer is
equipped with four 21064A processors operating at 233
MHz and with 256MB of shared memory, as well as a Mem-
ory Channel network interface. The 21064A’s primary data
cache size is 16 Kbytes, and the secondary cache size is 1
Mbyte. A cache line is 64 bytes. Each AlphaServer runs
Tru64 UNIX 4.0/878 with TruCluster v. 1.5 (Memory Chan-
nel) extensions. The systems execute in multi-user mode,
but with the exception of normal Unix daemons, no other
processes were active during the tests. In order to increase
cache efficiency, application processes are pinned to a pro-
cessor at startup. No other processors are connected to the
Memory Channel.



3.1 Application Characteristics

We present results for 4 applications:
CLU: A kernel that performs a factorization of a given

matrix. The matrix is divided in square blocks that are dis-
tributed among processors in a round-robin fashion. Blocks
”owned” by a single processor are allocated contiguously
in memory. The active working set consists of the blocks
owned by the processor and the pivot block used to factor
them. Over time, the size of the active working set is re-
duced as factored blocks no longer need to be accessed.

TCLOS: A kernel that computes the transitive closure
for a directed graph. The graph is represented as a matrix
with a unit value in position �i� j� representing an edge be-
tween vertices i and j. Rows of the matrix are distributed in
blocked fashion. The working set for this application con-
sists of the rows owned by each processor and the pivot row
used to compute the partial transitive closure. The working
set size stays constant during the execution of the programs.

GAUSS: A solver for a system of linear equations AX �
B using Gaussian Elimination and back-substitution. For
load balance, the rows are distributed among processors
cyclically. The active working set consists of the rows com-
puted on by the processor and the pivot row used to eliminate
them. Over time the working set size decreases as eliminated
rows drop out of the computation.

QSORT: A sorting program that uses the parallel quick-
sort algorithm to sort a list of double-precision floating point
numbers in place. Load-balancing is implemented using a
work queue. The application implements limited affinity
scheduling for work items in the queue. The active work-
ing set of the application is highly dependent on the work
scheduling and can be quite random. However, the active
working set size decreases over time as the large array is
fragmented into smaller partially sorted pieces.

We have chosen these applications because they allow us
to arbitrarily scale the input data-set sizes in order to exam-
ine the impact of memory pressure on the performance of
our system, and because they are applications that access dif-
ferent regions of shared memory with time, helping demon-
strate performance on a reasonable spectrum of access pat-
terns.

3.2 Performance Comparison

In order to determine the performance effect of the mod-
ifications made to the protocol for the VLM enhancements,
we compare the VLM protocol with the base Cashmere-2L
protocol. For each application, we present results for two dif-
ferent data sets - one that fits in available physical memory
and one that exceeds the available physical memory within a
single node.

We have also conducted some microbenchmarks to allow
us to quantify the cost of paging on our system. On average,
the cost of paging a single page into the system from disk
was measured to be � milliseconds. However, costs can vary,

since paging occurs on blocks of pages rather than individ-
ual pages themselves. The cost of an mprotect varies from
18-29 �secs depending on the relative positions of consecu-
tive calls. Similarly, the cost of shmat and shmdt varies
between 35 and 70 �secs. The cost of an shmget increases
dramatically with the number of shared segments, starting at
51 �secs when there is one shared segment and going up to
2.5 msecs when there are 16384 segments. Since the use of
many segments is required in order to effect user-level page
eviction, this reinforces the need to eliminate shmget calls
from the VLM protocol.

The cost of evicting a page can vary from 274 to 1130
�secs. The lower cost corresponds to the average cost of
evicting a read-only page. In this scenario no data needs to be
transferred through the network and thus the cost is derived
from shooting down other sharers on the node and from the
system calls involved with unmapping a page. The higher
cost is the average cost of evicting a home page and includes
any wait time for the completion of outstanding transactions
on that page, shooting down other sharers on the node, find-
ing a new home node, and transferring the page data to the
new home node. Since the transfer across the Memory Chan-
nel does not use direct memory access (DMA), the cost of
eviction is visible to the process performing the eviction, if
data actually does have to be moved across the network. The
cost of retrieving a page across the network from the memory
of a remote node is 530 �secs.

3.3 Small Data Sets

Figure 1 shows the relative runtimes of the two systems,
base Cashmere (CSM) and Cashmere-VLM (CSM-VLM), on
the small data sets (data-set sizes are specified in the graph
legends — each data element is a 64-bit quantity for all ap-
plications). Sequential execution times for CLU, TCLOS,
GAUSS, and QSORT are 294.9, 828.4, 957.6, and 110.2 sec-
onds, respectively. We see that adding eviction and remote-
memory paging capability (CSM-VLM) does not affect the
runtime of the applications appreciably, showing an average
3% degradation. The extra checks during page faults and at
acquire synchronization points have a negligible impact on
performance.

3.4 Large Data Sets

Figure 2 shows the runtime of our four applications on
the larger data sets under the two protocols (again, data-
set sizes are in the legends). We do not report sequential
execution times for the large datasets since excessive re-
sults in poor sequential performance. When compared with
the CSM protocol, CSM-VLM shows moderate to significant
performance improvements on all four applications, rang-
ing from a factor of 1.02 to 1.58. We have also collected
statistics on the number of pages paged to (Page-out) and
from (Page-in) disk, the number of pages evicted to re-
mote memory across the network (Page-net), the number



0

20

40

60

80

100

120

CL
U 

2k
x2

k

TC
LO

S 
2k

x2
k

G
AU

SS
 2

kx
2k

Q
SO

RT
 1

0M

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s)

CSM
CSM-VLM

Figure 1. Execution times for small data sets
at 16 processors.

of pages fetched from remote memory across the network
(Page-fetch), the number of page faults encountered by
each application (Faults), and the combined amount of
data transferred through the network for both paging and
coherence purposes (Bytes). The numbers in parentheses
for both Page-out and Page-in indicate the maximum
value at any node (the base numbers are an aggregate across
all nodes). � These statistics are reported in Table 1.

Finally, for CSM-VLM, we have broken down the number
of page evictions through the network into home evictions
and other evictions and have collected statistics on the num-
ber of eviction attempts that failed due to the inability to find
a new home node for the page. These statistics are reported
in Table 2. Home evictions require sending the entire page
to the new home, and therefore add to the total data traffic
on the network. This is the statistic reported in Table 1 under
Page-net, and represents the number of evictions that add
a significant penalty in terms of time. (The Memory Channel
uses programmed I/O and the communication cost is visible
to the evicting process.)

Comparing CSM-VLM’s Page-fetch andPage-net
statistics with CSM’s Page-fetch and Page-in statis-
tics provides an indication of the reasons behind their rela-

�The operating system counts each page that is swapped out only once
in the statistics, but if a number of processors simultaneously fault on a
swapped-out page, the Page-in count will be incremented by the num-
ber of processors. This, along with the fact that clean pages do not add
to the Page-out count, helps explain why some applications report more
Page-in than Page-out counts.

0

500

1000

1500

2000

2500

3000

3500

CL
U 

6k
x6

k

TC
LO

S 
6k

x6
k

G
AU

SS
 6

kx
6k

Q
SO

RT
 4

0M

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s)

CSM
CSM-VLM

Figure 2. Execution times for large data sets
at 16 processors.

Application Home Ev. Other Ev. Failed Ev.
CLU 20K 28K 2K

TCLOS 0 84K 2K
GAUSS 22K 65K 6K
QSORT 180K 65K 4K

Table 2. Characterization of network evictions
in CSM-VLM.

tive performance. (As a rough approximation, Page-ins
are assumed to be in the application’s critical path, while
Page-outs are performed in the background.) For three
of the four applications, the Page-fetch numbers are
fairly close. The only application with a significant in-
crease in the number of pages fetched is QSORT, where
the Page-fetch number is 4 times higher in CSM-VLM.
However, disk I/O is replaced with cheaper network I/O in
the form of Page-fetches and Page-nets, thereby re-
sulting in improved performance for CSM-VLM.

CLU under CSM-VLM shows a runtime reduction of ap-
proximately 260 seconds (a performance improvement by a
factor of 1.45) when compared with the CSM protocol. This
performance improvement can be entirely attributed to the
elimination of disk paging. The eviction policy we have
chosen appears to do a reasonable job of choosing victim
pages. This can be seen both in the modest increase in the
number of faults and in the number of bytes transferred un-
der CSM-VLM when compared with CSM. The number of
pages fetched across the network also does not change. The



Application Protocol Page-in Page-out Page-net Page-fetch Faults Bytes

CLU CSM 5.7K (1.6K) 14.0K (4.0K) 0 83.3K 205K 684M
CSM-VLM 0.5K (0.2K) 0 20K 83.4K 205K 686M

TCLOS CSM 7.1K (1.9K) 23.3K (6.0K) 0 110.6K 670K 913M
CSM-VLM 0.9K (0.5K) 0 0 110.6K 627K 914M

GAUSS CSM 20.2K (6.5K) 26.3K (7.3K) 0 121.6K 525K 999M
CSM-VLM 0.5K (0.2K) 0K 22.2K 139.9K 554K 1151M

QSORT CSM 181.9K (166.4K) 65.0K (49.2K) 0 81K 490.4K 2195M
CSM-VLM 8.8K (3.6K) 13.6K (4.9K) 180K 331K 939.5K 3297M

Table 1. Paging and other statistics for regular Cashmere (CSM), and Cashmere-VLM (CSM-VLM).
Numbers in parentheses for Page-out and Page-in are the highest values on any node.

modest increase in network traffic can be explained from the
data in Table 2. As we can see, over two-thirds of the evicted
pages did not require a home relocation and thus did not need
to move any data through the network. Also, most of the
evicted pages were not re-accessed.

TCLOS shows a smaller relative performance improve-
ment than CLU. This is because CLU is more cache friendly
due to its blocked nature and runs in significantly less time.
As a result, the paging overhead is a more significant com-
ponent of runtime and CLU benefits from CSM-VLM more
than TCLOS does.

GAUSS shows a 2% runtime improvement over CSM
when run under CSM-VLM. GAUSS’ per-processor work-
ing set is not contiguous in memory. The lack of data conti-
guity confuses the operating system (OS) paging algorithm,
and results in GAUSS paging four times as much data from
disk as either TCLOS or CLU under base CSM. The exis-
tence of the back-substitution phase further complicates the
application’s access pattern as pages are accessed in reverse
order from the first triangularization phase. Pages already
evicted during the triangularization phase will be accessed
again causing a higher number of page-ins. This latter
effect renders our VLM eviction policy less effective as we
evict pages that are later re-used. This can be seen by the
increase in the number of pages fetched through the network
when compared to the CSM protocol.

Quicksort is arguably the most interesting of the four ap-
plications since it has the highest amount of paging activity.
Quicksort uses a work queue of sub-arrays that need to be
sorted, which results in a non-deterministic access pattern
by the processors. As can be seen, CSM-VLM reduces the
runtime by over 36% when compared to CSM. The perfor-
mance improvement over CSM can be entirely attributed to
the significant reduction in paging activity without a corre-
sponding increase in network traffic. However, due to the
random access pattern of the application and limitations of
our user-level network eviction policy, some disk paging re-
mains even for the VLM protocol.

In our experiments, we also found that an efficient OS
implementation of shared and virtual memory mappings is
essential for the effective performance of CSM-VLM, and

more generally, software DSMs. On an earlier, less opti-
mized version of the OS, QSORT executed 2.2 times slower
on CSM-VLM than on base CSM. This slowdown was due
to the OS’s poor management of large numbers of shared
segments, which resulted in significant cost increases for
mprotect, shmat, and shmdt calls. In particular, the
cost of mprotect calls in moving from one segment to
16384 segments increased from 18�secs to 1.7 msecs, while
the cost of shmat and shmdt calls increased from 33 �secs
to 1.1 msecs. A recent upgrade to our OS solved these prob-
lems by greatly improving the management of shared seg-
ments. With the new, efficient OS implementation, CSM-
VLM now outperforms base CSM by a factor of 1.58 on
QSORT.

4 Related Work

Several previous studies have examined methods for us-
ing remote memory in a workstation cluster. The Global
Memory System (GMS [6]) is one such system that provides
network-wide page replacement decisions on a network of
workstations. The system uses idle or ”older” pages in the
network to house replaced pages from highly active nodes.
It does not, however, take advantage of application-specific
information in order to make global page replacement deci-
sions, nor does it try to optimize shared page placement.

Other implementations of network-based paging systems
include those of Comer and Griffioen [4], and Felten and
Zahorjan [7]. Comer and Griffioen use dedicated remote
memory servers, while Felten and Zahorjan extend the idea
to use memory on idle client machines, with a centralized
registry process. Schilit and Duchamp [14] use network-
based paging for mobile computing with limited resources.
Franklin et al [8] describe a DBMS system using central-
ized remote memory paging at the server as a backing store.
Markatos [12] extends the use of remote memory to com-
mit transaction writes. These implementations generally
target different environments (mobile computing, file sys-
tems, DBMSes), and do not attempt to take advantage of
application-specific information to reduce the cost of paging
in parallel applications.



Li and and Petersen [10] have implemented a system
where they add memory modules on the I/O bus (VME bus)
of a computer system. This memory can be used both as
backing store (another level in the memory hierarchy), and
as slower main memory accessed via simple load and store
operations. Although this approach allows the use of mem-
ory as backing store, it does not attempt to take advantage
of redundant resources on a cluster. Rather, it requires that
dedicated resources be added to each individual workstation.

Perhaps the most closely related work is [11], in which
Li describes a strategy to reduce page swapping in software
DSM systems. The eviction policy described is similar to
the one we use, with three key differences, however. First,
we describe a working implementation using multiprocessor
nodes rather than uniprocessor nodes. Additional issues such
as the handling of shared segments arise in this case. Second,
our implementation is for a network of workstations, rather
than a multicomputer. Lastly, our implementation is for a re-
lease consistent rather than a sequentially consistent system,
resulting in differences in the categorization of page types,
and in the cost of network paging.

Finally, the JIAJIA DSM system [5] also attempts to ex-
tend a DSM protocol with evictions. However, it requires
the user to decide on an appropriate assignment of homes to
pages and disallows eviction of such home pages even if they
are unused by the home node.

5 Conclusion and Future Work

We have implemented and evaluated a software DSM sys-
tem that uses all of the memory in the cluster in order to re-
duce paging to disk. Leveraging application information can
often eliminate expensive paging operations by taking ad-
vantage of copies of data that have been replicated through-
out the cluster due to application data accesses. Our results
show a performance improvement of up to a factor of 1.58
for our test applications run using large data sets.

Further work is needed to explore alternative eviction
policies that can leverage application knowledge to a greater
extent. One possibility would be to provide application up-
calls from the runtime library and ask the application (or
compiler) to indicate which data is no longer needed. An-
other issue that needs to be solved is the extension of the
eviction mechanisms to account for private data as well as
shared data. Even though private data is not replicated and
thus the opportunity to take advantage of existing replicas
does not exist, it might still be preferable to page through
a fast high-bandwidth network if memory on a remote node
is free. Finally, either an in-kernel implementation or the
provision of kernel hooks to provide the necessary low-level
information should improve performance considerably.

References

[1] S. V. Adve and K. Gharachorloo. Shared Memory Consis-
tency Models: A Tutorial. In Computer, pages 66–76, De-

cember 1996.

[2] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R.
Rajamony, W. Yu, and W. Zwaenepoel. TreadMarks: Shared
Memory Computing on Networks of Workstations. Com-
puter, 29(2):18–28, February 1996.

[3] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementa-
tion and Performance of Munin. In Proceedings of the Thir-
teenth ACM Symposium on Operating Systems Principles,
pages 152–164, Pacific Grove, CA, October 1991.

[4] D. Comer and J. Griffioen. A New Design for Distributed
Systems : The Remote Memory Model. In Proceedings of
the Summer 1990 USENIX Conference, pages 127–135. June
1990.

[5] M. R. Eskicioglu, T. A. Marsland, W. Hu, and W. Shi. Eval-
uation of the JIAJIA Software DSM System on High Perfor-
mance Computer Architectures. In Proceedings of the ’99
Hawaii International Conference on System Sciences Con-
ference. January 1999.

[6] M. J. Feeley, W. E. Morgan, F. P. Pighin, A. R. Karlin, H. M.
Levy, and C. A. Thekkath. Implementing Global Memory
Management in a Workstation Cluster. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles,
Copper Mountain, CO, December 1995.

[7] E. W. Felten and J. Zahorjan. Issues in the Implementation
of a Remote Memory Paging System. Submitted for publi-
cation, November 1991.

[8] M. J. Franklin, M. J. Carey, and M. Livny. Global Mem-
ory Management in Client-Server DBMS Architectures. In
Proceedings of the 18th VLDB Conference. August 1992.

[9] R. Gillett. Memory Channel: An Optimized Cluster Inter-
connect. IEEE Micro, 16(2):12–18, February 1996.

[10] K. Li and K. Petersen. Evaluation of Memory System Exten-
sions. In Proceedings of the Eighteenth International Sym-
posium on Computer Architecture, pages 84–93, Toronto,
Canada, May 1991.

[11] K. Li. Scalability Issues of Shared Virtual Memory for Multi-
computers, Scalable Shared Memory Multiprocessors, pages
263–280. Kluwer Academic Publishers, 1991.

[12] E. P. Markatos. Using Remote Memory to Avoid Disk
Thrashing: A Simulation Study. In International Work-
shop on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS’96), San Jose, CA,
February 1996.

[13] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta:
A Low Overhead, Software-Only Approach for Supporting
Fine-Grain Shared Memory. In Proceedings of the Seventh
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 174–
185, Cambridge, MA, October 1996.

[14] B. N. Schilit and D. Duchamp. Adaptive Remote Paging.
Technical Report CUCS-004091, Department of Computer
Science, Columbia University, February 1991.

[15] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kon-
tothanassis, S. Parthasarathy, and M. Scott. Cashmere-2L:
Software Coherent Shared Memory on a Clustered Remote-
Write Network. In Proceedings of the Sixteenth ACM Sym-
posium on Operating Systems Principles, St. Malo, France,
October 1997.


