
E�cient Use of Memory�Mapped Network Interfaces for

Shared Memory Computing

Nikolaos Hardavellas� Galen C� Hunt� Sotiris Ioannidis� Robert Stets�
Sandhya Dwarkadas� Leonidas Kontothanassis� and Michael L� Scott

Department of Computer Science
University of Rochester

e�mail� cashmere�cs�rochester�edu

Abstract

Memory�mapped network interfaces provide users
with fast and cheap access to remote memory on
clusters of workstations� Software distributed shared
memory �DSM� protocols built on top of these net�
works can take advantage of fast messaging to im�
prove performance� The low latencies and remote
memory access capabilities of these networks suggest
the need to re�evaluate the assumptions underlying
the design of DSM protocols� This paper describes
some of the approaches currently being used to sup�
port shared memory e�ciently on such networks� We
discuss other possible design options for DSM systems
on a memory�mapped network interface and propose
methods by which the interface can best be used to
implement coherent shared memory in software�

� Introduction

Software distributed shared memory �DSM� is an
attractive design alternative for cheap shared memory
computing on workstation networks� TraditionalDSM
systems rely on virtual memory hardware and simple
message passing to implement shared memory� State�
of�the�art DSM systems employ sophisticated proto�
col optimizations� such as relaxed consistency models�
multiple writable copies of a page� and lazy processing
of all coherence�related events� These optimizations
recognize the very high �millisecond� latency of com�
munication on workstation networks� their aim is to
minimize the frequency of communication� even at the
expense of additional computation�

Recent technological advances have led to the com�
mercial availability of inexpensive workstation net�
works on which a processor can access the memory
of a remote node safely from user space 	
� �� �
� The

This work is supported in part by the National Science
Foundation under Grants CDA��������� and CCR��	����
�

latency of access is two to three orders of magnitude
lower than that of traditional message passing� These
networks suggest the need to re�evaluate the assump�
tions underlying the design of DSM protocols� This
paper describes existing protocols that take advantage
of the low�latency memory�mapped network interface�
and discusses the trade�o�s involved in e�ciently ex�
ploiting its capabilities� We discuss the design options
for DSM systems on a memory�mapped network inter�
face and propose methods by which the interface can
best be used to implement software coherent shared
memory�

We restrict ourselves to a discussion of systems that
support more�or�less �generic� shared�memory pro�
grams� such as might run on a machine with hardware
coherence� The memory model presented to the user
is release consistency 	�
� with explicit synchronization
operations visible to the run�time system�

We begin with a summary of existing protocols and
implementations� Cashmere 	��
 employs a directory�
based multi�writer protocol that exploits the write�
through capabilities of its network in order to merge
updates by multiple processors� AURC 	��
 is an
interval�based multi�writer protocol designed for the
Shrimp network interface 	

� Shasta 	��
 uses a single�
writer directory protocol with in�line protocol opera�
tions to support variable�size coherence blocks� Fi�
nally� TreadMarks 	�
 uses a multi�writer interval�
based protocol to provide DSM on message�passing
networks� on a memory�mapped network it uses the
extra functionality only for fast messages�

These protocols represent only a small subset of
choices in a very large design space� We enumerate al�
ternatives for DSM systems on a memory�mapped net�
work interface� and discuss methods to exploit that in�
terface for high�performance software shared memory�
Issues we consider include� �� coherence granularity
and miss detection mechanism� �� metadata represen�
tation �directories v� intervals�� 
� home node place�



ment�migration� �� update collection mechanism� ��
use of remote�mapped address space� and �� syn�
chronous remote operations �interrupts� etc��

The rest of the paper is organized as follows�
Section � describes existing protocols implemented
on memory�mapped network interfaces� Section 

discusses performance tradeo�s in more detail� and
presents a summary of results from a comparison of
two of the protocols� Section � concludes with a sum�
mary of future directions�

� Discussion of Existing Protocols

��� Background

Software distributed shared memory �DSM� com�
bines the ease of programming of shared memory
machines with the scalability of distributed memory
�message passing� machines� DSM systems provide an
avenue for a�ordable� easy�to�use supercomputing for
computationally demanding applications in a variety
of problem domains�

The original idea of using the virtual memory sys�
tem on top of simple messaging to implement software
coherence on networks dates from Kai Li�s thesis work
on Ivy 	��
� A host of other systems were built follow�
ing Li�s early work� Nitzberg and Lo 	��
 provide a sur�
vey of early VM�based systems� Many of these systems
often exhibited poor performance due to false sharing�
The large granularity of the coherence blocks and the
sequential consistency memory model used often re�
sulted in page thrashing without real data sharing at
the application level� Several groups employed simi�
lar techniques to migrate and replicate pages in early�
cache�less shared�memory multiprocessors 	�� ��
�

Relaxed consistency models result in considerable
improvements in DSM performance� Munin 	�
 was
the �rst DSM system to adopt a release consistency
model and to allowmultiple processors to concurrently
write the same coherence block� Processors kept track
of what modi�cations they had made on a page by
making a copy of the page before starting to write
it �called twinning�� and then comparing the page to
its twin �called di�ng�� TreadMarks 	�
 uses a lazy
implementation of release consistency 	��
� which fur�
ther limits communication to only those processes that
synchronize with one another�

Recent advances in network technology have nar�
rowed the gap in communication performance between
single�chassis systems and clusters of workstations� At
the high end �in terms of cost�� recent commercial of�
ferings from Sequent and SGI construct large� cache�
coherent systems frommultiprocessor nodes on a high�

speed network� Several other academic and commer�
cial projects are developing special�purpose adaptors
that extend cache coherence �at somewhat lower per�
formance� but potentially lower cost� across a col�
lection of SMP workstations on a commodity net�
work� these include the Dolphin SCI adaptor 	��
�
the Avalanche project 	�
 at the University of Utah�
and the Typhoon project at the University of Wis�
consin 	��
� At still lower cost� memory�mapped net�
work interfaces without cache coherence allow mes�
sages �typically triggered by ordinary loads and stores�
to be sent from user space with microsecond latencies�
examples here include the Princeton Shrimp 	

� DEC
Memory Channel 	�
� and HP Hamlyn 	�
 networks�
Software DSM systems built on top of these very fast
networks are an attractive cost�e�cient alternative to
full hardware coherence� In the rest of this section� we
focus on four software DSM systems implemented on
a memory mapped network interface�

��� Software DSMs on memory mapped
network interfaces

TreadMarks 	�
 is a distributed shared memory
system based on lazy release consistency �LRC� 	��
�
Lazy release consistency guarantees memory consis�
tency only at synchronization points and permits mul�
tiple writers per coherence block� Time on each node
is divided into intervals delineated by remote acquire
synchronization operations� Each node maintains a
timestamp consisting of a vector of such intervals� en�
try i on processor j indicates the most recent interval
on processor i that logically precedes the current in�
terval on processor j� When a processor takes a write
page fault� it creates a write notice for the faulting
page and appends the notice to the list of such notices
associated with its current interval� During synchro�
nization events the synchronizing processors exchange
their vector timestamps and invalidate all pages that
are described in write notices associated with inter�
vals known to one processor but not known to the
other� The write notices are appended to the data
structures that describe the invalidated pages� In sub�
sequent faults� the list of write notices associated with
a page is perused and the changes made by the pro�
cessors speci�ed in the write notices are fetched� As in
Munin� each processor keeps track of its own changes
by using twins and di�s� There is one di� for every
write notice in the system�

Our implementation of TreadMarks for the DEC
Memory Channel makes use of the memory�mapped
network interface for fast messaging and for a user�
level implementation of polling� allowing processors to



exchange asynchronous messages inexpensively� We
do not currently use broadcast or remote memory ac�
cess for either synchronization or protocol data struc�
tures� nor do we place shared memory in Memory
Channel space�

Cashmere 	��
 is a software coherence system ex�
pressly designed for memory�mapped network inter�
faces� It was inspired by Petersen�s work on coher�
ence for small�scale� non�hardware�coherent multipro�
cessors 	��
� Cashmere maintains coherence informa�
tion using a distributed directory data structure� For
each shared page in the system� a single directory en�
try indicates one of three possible page states� un�
cached� read�shared� or write�shared� At a release op�
eration a processor consults the directory regarding
pages it has written� and� if the page is not already in
write�shared state� sends a write notice to all proces�
sors that have a copy of the page� At an acquire oper�
ation� a processor invalidates all write�shared pages in
its sharing set� As in TreadMarks there may be multi�
ple concurrent writers of a page� Rather than keeping
di�s and twins� however� Cashmere arranges for ev�
ery processor to write its changes through� as they
occur� to a unique home copy of each page� When a
processor needs a fresh copy of a page it can simply
make a copy from the home� this copy is guaranteed to
contain all changes made by all processors up to that
point in time� Cashmere currently runs on the Mem�
ory Channel� Because the network adaptor does not
snoop on the memory bus� Cashmere binaries must be
modi�ed to �double� every write to shared memory�
one write goes to the local copy of the data� the other
goes to I�O space� where it is caught by the adaptor
and forwarded to the home node�

AURC 	��
 is a multi�writer protocol designed for
the Princeton Shrimp 	

� Like TreadMarks� AURC
uses distributed information in the form of timestamps
and write notices to maintain sharing information�
Like Cashmere� it relies on �remote� write�through to
merge changes into a home copy of each page� Be�
cause the Shrimp interface connects to the memory
bus of its ����based nodes� it does not need to aug�
ment the executable like Cashmere does� thus avoid�
ing a major source of overhead� Experimental results
for AURC are currently based on simulation� imple�
mentation results await the completion of a large�scale
Shrimp testbed�

Shasta 	��
� developed at DEC WRL� employs
a single�writer relaxed consistency protocol with

variable�size coherence blocks� Like TreadMarks�
Shasta uses the Memory Channel only for fast messag�
ing and for an inexpensive implementation of polling
for remote requests� A major di�erence between
Shasta and the above DSMs is the mechanism used
to detect coherence misses� Rather than rely on VM�
Shasta inserts consistency checks in�line when access�
ing shared memory� Aggressive compiler optimiza�
tions attempt to keep the cost of checks as low as pos�
sible� Because of its software miss detection� Shasta
can maintain coherence at granularities smaller than
a page� thus reducing false sharing e�ects seen by the
previous three systems� and reducing the need for mul�
tiple writers� If di�erent data ranges within an ap�
plication display di�erent access patterns� Shasta can
use a di�erent coherence granularity for each� thereby
allowing the user to customize the protocol� Small
coherence blocks have also been explored in the Bliz�
zard system 	��
� but with a much less aggressive�
sequentially�consistent protocol�

� Performance Trade�O�s

Figure � presents results comparing two of the sys�
tems discussed above�TreadMarks and Cashmere�
On the whole� the TreadMarks protocol with polling
provides the best performance� though the Cashmere
protocol comes close in several cases 	�

� In general�
the Cashmere protocol su�ers from the overhead of
write doubling� thrashing in the L� cache� and the lack
of bandwidth for write�throughs� The cache problems
stem from the combination of a very small cache size
���KB on the �����A processor used in our experi�
ments� and cache pressure from write doubling� Both
bandwidth and cache size will improve dramatically
in future hardware from DEC� In Barnes� Cashmere
already scales better than TreadMarks� by taking ad�
vantage of write�through to merge updates by multiple
processors at a single location�

The DSM protocols discussed above and in sec�
tion � represent only a small subset of choices in a
very large design space� In this section we enumerate
alternatives for DSM systems on a memory�mapped
network interface� and discuss methods to exploit that
interface for high�performance software shared mem�
ory�

��� Coherence Granularity and Miss De�
tection Mechanism

Software DSM systems require a mechanism for
processes to detect when they are trying to access data
that is not present in their sharing set� or for which



Cashmere TreadMarks

S
O

R LU

W
A

TE
R

TS
P

G
A

U
S

S

IL
IN

K

E
M

3D

B
A

R
N

E
S

S
pe

ed
up

0

4

8

12

16

20

24

28

32

Figure �� Cashmere and TreadMarks speedups on the
Memory Channel� with 
� processors computing�

they do not have the appropriate access permissions�
Two such mechanisms exist� hardware faults and in�
line checks before shared loads and stores� Of the four
systems outlined in Section �� three�TreadMarks�
Cashmere� and AURC�use page faults and therefore
maintain coherence at the granularity of pages� In
some systems it is possible to generate faults at a �ner
granularity using the ECC bits in memory 	��
�

Shasta checks a directory in software before shared
loads and stores� If the check reveals an inconsistent
state the program branches into a software handler
that performs the necessary protocol actions� Inline
checks are signi�cantly cheaper than faults but have
the disadvantage that they have to be performed on
load and store instructions that would not cause a
fault in a VM�based system� Aggressive compiler op�
timizations help to reduce the cost of inline checks�
further reductions are an active area of research� Like
ECC faults� in�line checks allow programs to use �ner
�and even variable� grain coherence blocks� Smaller
blocks mitigate false sharing e�ects that might oth�
erwise be observed with page�size coherence blocks�
Multi�writer protocols also mitigate false sharing� but
less e�ectively�

In general software DSM systems work best when
applications employ larger blocks� thus minimizing
the network startup latency and software overhead to
transfer a given amount of data� The smaller blocks of
Shasta would seem to be of the greatest bene�t for ap�
plications in which hardware DSM enjoys the largest
comparative advantage�

��� Metadata Representation

Cashmere and Shasta utilize directories in order to
maintain sharing information on coherence blocks� Di�
rectories need to be updated when a processor misses
on a coherence block� and also during synchronization
events� Directories make more sense with a memory�
mapped network than they do with a message�passing
network� due to the low latency of messages� The fact
that directories maintain global information �based on
wall�clock time� means that processors may perform
invalidations not strictly required by the happens�
before relationship�

Distributed time�stamps allow processes to proceed
without communication until they synchronize� A dis�
advantage of this approach is the accumulation of con�
sistency information� requiring garbage collection� In
addition� the lack of centralized information on a page
may force processes to exchange write notices regard�
ing pages that they are not actively sharing�

��� Home Node Placement�Migration

For protocols such as Cashmere� AURC� and
Shasta� which maintain a �home� copy of each page�
the choice of home node is important� Ideally� a page
should be placed at the node that accesses it the most�
At the very least� it should be placed at a node that
accesses it some� Cashmere currently uses a ��rst
touch after initialization� policy� resulting in reason�
ably good home node placement 	��
�

A �xed choice of home node may lead to poor per�
formance for migratory data in Cashmere and AURC�
because of high write�through tra�c� Similarly� a
home node for directory entries in Shasta implies a 
�
way request for invalid data� which is directed through
the home node to the current dirty copy� While data
tra�c is still ��hop� care must be taken at compile�
time to choose the correct granularity of directory ac�
cess to avoid the ping�pong e�ect of false sharing� Un�
fortunately� in the presence of write�through there ap�
pears to be no way to change a home node at run�time
without global synchronization� Remapping of pages
is also fairly expensive�

Because modi�cations in TreadMarks are kept on
the processor making the changes� and distributed
only on demand� the issue of home node placement
does not arise� Requests for updates to migratory data
are automatically directed to the modifying processor�
This localization of updates comes at the expense of
additional computation for di�ng and twinning� This
overhead can be considerably reduced by combining
single and multi�writer protocols 	�
�



��� Update Collection Mechanism

Cashmere and AURC avoid the computation over�
heads of di�ng and twinning by writing data through
to a home node� In the case of multiple concurrent
writers� this has the advantage that subsequent re�
quests for data by processors whose pages have been
invalidated can be satis�ed in their entirety by the
home node� In contrast� TreadMarks must request
di�s from all concurrent writers in order to update
such a page� This results in a large number of mes�
sages in comparison to Cashmere or AURC� and a
corresponding loss in performance� The amount of
data tra�c could� however� be lower� in the case of
multiple writes to the same location since data is only
transferred via an explicit request�

The Shasta protocol disallows multiple concurrent
writers� Cache blocks that are actively write�shared
will ping�pong between the sharing processors� Shasta
reduces ping�ponging due to false sharing by using
small coherence blocks� This of course increases the
number of messages required to bring in the same
amount of data� In order for small blocks to be prof�
itable� the latency of messages must be low�

An attractive alternative would be to use home
nodes to accumulate updates� but to collect them us�
ing twins and di�s� to minimize network tra�c� We
are adopting this approach in a version of Cashmere
currently under development�

��	 Use of Remote�Mapped Address
Space

An important issue when designing DSM protocols
for remote memory access networks is how best to
exploit the ability to access remote memory directly�
Choices include� a� make all shared memory accessi�
ble remotely� as in AURC and Cashmere� b� put all
or some of the DSM metadata �directories� write no�
tices� di�s� in shared space� but keep real data re�
motely inaccessible� and c� use the interface only for
fast messaging and synchronization� as in Shasta and
TreadMarks�

AURC and Cashmere make all shared memory ac�
cessible remotely� The advantage of this approach is
that it allows in�place updates of home nodes� and di�
rect transfers from the home to sharing nodes� without
extra copies or remapping� The disadvantage �other
than the bandwidth requirements of write�through� if
any� is that the shared address space is limited to the
amount of memory that can be remotely mapped� On
the Memory Channel under Digital Unix� we are cur�
rently limited to about ��� MB�

TreadMarks and Shasta use the network interface
only for fast messaging� The advantage of this ap�
proach is scalability� since the size of shared memory
is not limited by the interface� However the latency of
operations is higher� since data has to be transferred
via the network into a message bu�er and then copied
to its �nal destination�

��
 Synchronous Remote Operations

A side�e�ect of making all shared memory
remotely�accessible is that there is no need to inter�
rupt a remote processor in order to update its data�
For networks such as Memory Channel and Shrimp�
however� active cooperation of a remote processor is
still required to read from a remote location�a reader
must ask a remote processor to write the data back
to it� Remote requests can be made using either in�
terrupts or polling� The tradeo� between the two is
similar to the one between fault�based and in�line ac�
cess checks� polling incurs a modest constant over�
head� while remote interrupts impose a large occa�
sional overhead� At present polling outperforms re�
mote interrupts for most of our applications on the
Memory Channel under Digital Unix� Fast remote in�
terrupts might tip the balance the other way�

Cashmere requires synchronous remote operations
only to read remote data� Because all metadata and
shared memory resides in Memory Channel space�
�non�coherent� hardware reads would eliminate the
need for either interrupts or polling� TreadMarks and
Shasta place each processor in charge of maintaining
its own data and metadata� As a result they use re�
mote operations more extensively� AURC is some�
where in�between� it places shared data in remotely�
accessible space� and updates it directly� but uses in�
terrupts to trigger operations on locally�maintained
metadata� A fourth alternative� which we are pursuing
in a version of TreadMarks currently under develop�
ment� is use remotely�accessible space only for meta�
data� This option permits very large data sets� while
eliminating most of the interrupts associated with ac�
quires and facilitating garbage collection of old inter�
vals and di�s� A similar approach might also be at�
tractive in Shasta�

� Conclusion

In this paper� we have presented a survey of ex�
isting DSM protocols developed for remote memory�
mapped network interfaces� and have discussed the
trade�o�s involved in their design and implementation�
The trade�o�s involved include coherence granularity



�and method of detecting consistency violations�� cen�
tralized directory�based coherence versus distributed
vector timestamps� write�through of data to a central
home node versus di�ng and twinning versus single�
writer mode� variable coherence granularity� and the
use of interrupts in handling remote requests� We are
in the process of systematically evaluating the design
space for software DSM systems on top of memory�
mapped network interfaces� Early experiments indi�
cate that twinning and di�ng tends to do better than
write�through if the latter is not supported in hard�
ware� However� write�through has advantages when
used for the maintenance of protocol meta�data rather
than application shared data� Based on our early �nd�
ings� we are developing a VM�based protocol that will
combine the advantages of write�through for protocol
meta�data with the advantages of twinning and di�ng
for application data� In the near future� we expect to
expand our evaluation to include coherence granular�
ity issues and the choice of mechanism for detecting
remote cache misses�

References

��
 C� Amza� A� L� Cox� S� Dwarkadas� P� Keleher� H� Lu�
R� Rajamony� W� Yu� and W� Zwaenepoel� TreadMarks�
SharedMemory Computing on Networks ofWorkstations�
Computer� ������������ Feb� �����

��
 C� Amza� A� Cox� S� Dwarkadas� and W� Zwaenepoel�
Software DSM Protocols that Adapt between Single
Writer and Multiple Writer� In Proc� of the �rd Intl�
Symp� on High Performance Computer Architecture� Feb�
�����

�	
 M� Blumrich� K� Li� R� Alpert� C� Dubnicki� E� Felten�
and J� Sandberg� Virtual Memory Mapped Network In�
terface for the SHRIMP Multicomputer� In Proc� of the
��st Intl� Symp� on Computer Architecture� pp� �����
	�
Apr� �����

��
 W� J� Bolosky� M� L� Scott� R� P� Fitzgerald� R� J� Fowler�
and A� L� Cox� NUMA Policies and Their Relation to
Memory Architecture� In Proc� of the �th Intl� Conf� on
Architectural Support for Programming Languages and
Operating Systems� pp� �������� Apr� �����

�

 G� Buzzard� D� Jacobson� M� Mackey� S� Marovich� and
J� Wilkes� An Implementation of the Hamlyn Sender�
Managed Interface Architecture� In Proc� of the �nd
Symp� on Operating Systems Design and Implementa�
tion� Oct� �����

��
 J� B� Carter� J� K� Bennett� and W� Zwaenepoel� Im�
plementation and Performance of Munin� In Proc� of the
��th ACM Symp� on Operating Systems Principles� pp�
�
������ Oct� �����

��
 J� B� Carter� A� Davis� R� Kuramkote� and M� Swan�
son� The Avalanche Multiprocessor� An Overview� In �th
Workshop on Scalable Shared Memory Multiprocessors�
Boston� MA� Oct� �����

��
 K� Gharachorloo� D� Lenoski� J� Laudon� P� Gibbons� A�
Gupta� and J� L� Hennessy� Memory Consistency and

Event Ordering in Scalable Shared�Memory Multiproces�
sors� In Proc� of the �	th Intl� Symp� on Computer Ar�
chitecture� pp� �
���� May �����

��
 R� Gillett� Memory Channel� An Optimized Cluster In�
terconnect� IEEE Micro� ������ Feb� �����

���
 L� Iftode� C� Dubnicki� E�W� Felten� and K� Li� Improving
Release�Consistent Shared Virtual Memory Using Auto�
matic Update� In Proc� of the �nd Intl� Symp� on High
Performance Computer Architecture� Feb� �����

���
 P� Keleher� A� L� Cox� and W� Zwaenepoel� Lazy Release
Consistency for Software Distributed Shared Memory� In
Proc� of the �
th Intl� Symp� on Computer Architecture�
pp� �	���� May �����

���
 L� I� Kontothanassis and M� L� Scott� Using Memory�
Mapped Network Interfaces to Improve the Performance
of Distributed Shared Memory� In Proc� of the �nd Intl�
Symp� on High Performance Computer Architecture� Feb�
�����

��	
 L� Kontothanassis� G� Hunt� R� Stets� N� Hardavellas� M�
Cierniak� S� Parthasarathy� W� Meira� S� Dwarkadas� and
M� L� Scott� VM�Based Shared Memory on Low�Latency�
Remote�Memory�Access Networks� In Proc� of the ��th
Intl� Symp� on Computer Architecture� June �����

���
 R� P� LaRowe Jr� and C� S� Ellis� Experimental Compar�
ison of Memory Management Policies for NUMA Multi�
processors� ACM Trans� on Computer Systems� �����	���
	�	� Nov� �����

��

 K� Li and P� Hudak� MemoryCoherence in SharedVirtual
Memory Systems� ACM Trans� on Computer Systems�
�����	���	
�� Nov� �����

���
 O� Lysne� S� Gjessing� and K� Lochsen� Running the SCI
Protocol overHIC Networks� In Second Intl� Workshop on
SCI�based Low�cost�High�performance Computing� Mar�
���
�

���
 M� Marchetti� L� Kontothanassis� R� Bianchini� and M� L�
Scott� Using Simple Page Placement Policies to Reduce
the Cost of Cache Fills in Coherent Shared�Memory Sys�
tems� In Proc� of the 
th Intl� Parallel Processing Symp��
Apr� ���
�

���
 B� Nitzberg and V� Lo� Distributed Shared Memory� A
Survey of Issues and Algorithms� Computer� ������
�����
Aug� �����

���
 K� Petersen and K� Li� Cache Coherence for SharedMem�
ory Multiprocessors Based on Virtual Memory Support�
In Proc� of the 	th Intl� Parallel Processing Symp�� Apr�
���	�

���
 S� K� Reinhardt� J� R� Larus� and D� A� Wood� Tempest
and Typhoon� User�level Shared�Memory� In Proc� of the
��st Intl� Symp� on Computer Architecture� pp� 	�
�		��
Apr� �����

���
 D� J� Scales� K� Gharachorloo� and C� A� Thekkath�
Shasta� A Low Overhead� Software�Only Approach for
Supporting Fine�Grain Shared Memory� In Proc� of the
	th Intl� Conf� on Architectural Support for Programming
Languages and Operating Systems� Oct� �����

���
 I� Schoinas� B� Falsa�� A� R� Lebeck� S� K� Reinhardt� J�
R� Larus� and D� A� Wood� Fine�grain Access Control for
Distributed Shared Memory� In Proc� of the �th Intl�
Conf� on Architectural Support for Programming Lan�
guages and Operating Systems� pp� ����	��� Oct� �����


