
Understanding the Performance of DSM
Applications �

Wagner Meira Jr�� Thomas J� LeBlanc� Nikolaos Hardavellas�

Cl�audio Amorim�

� Department of Computer Science� University of Rochester� Rochester � NY � �����
fmeira�leblanc�nikolaosg�cs�rochester�edu

� COPPE Systems Engineering� UFRJ� Rio de Janeiro� Brazil � ��	�
�	��
amorim�cos�ufrj�br

From Proceeedings of the Workshop on Communication and Architectural Support

for Network�based Parallel Computing 
CANPC� 	��� San Antonio� TX� February 	��

Abstract� Carnival is a performance measurement and analysis tool
that assists users in understanding the performance of DSM applications
and protocols� Using traces of program executions� Carnival presents
performance data as a hierarchy of execution pro�les� During analysis�
Carnival automates the inference process that relates performance phe�
nomena to speci�c causes in the source code or DSM protocol using
techniques that focus on the two most important sources of overhead in
DSM systems� waiting time analysis identi�es the causes of synchroniza�
tion overhead� and produces an explanation for each source of waiting
time in the program� communication analysis identi�es the sequence of
requests that result in invalidations� and produces an explanation for
each source of communication� We describe these techniques and their
implementation in TreadMarks� and show how to use waiting time anal�
ysis and communication analysis to improve the running time of two
programs from the SPLASH application suite when executed on DEC
Alphas connected by a DEC Memory Channel network�

� Introduction

Shared memory is an attractive programming model because it is easier to use
than a distributed�memory model� Software DSM �distributed shared memory�
systems o�er the simplicity of the shared�memory programming model on cost�
e�ective distributed�memory architectures �including networks of workstations��
Although early DSM systems could only provide good performance for a limited
class of applications� recent advances at both the protocol level 	
� �� �
 and the
architecture level 	�� �� �
 have made DSM a practical and cost e�ective approach
to parallel computing� Nonetheless� synchronization and communication are still
major sources of performance degradation in DSM systems�

� This research was supported by NSF grant CCR�	
������ an NSF CISE Institutional
Infrastructure Grant No� CDA�	������� and an equipment grant from Digital Equip�
ment Corporation�s External Research Program� Wagner Meira Jr� is supported by
CNPq�Brazil� Grant ��������	���� Cl�audio Amorim is a visiting professor at the
University of Rochester and is supported by CAPES� Brazil�



Reducing or eliminating synchronization and communication in DSM systems
is complicated by several factors� First� communication in a DSM system is
dictated by the details of the coherence protocol� and therefore is not under the
direct control of the user� As a result� the relationship between shared�memory
references in the source code and the resulting frequency of invalidations� page
requests� and di�s may not be understood by the programmer� Second� DSM
systems support the shared�memory model on a range of architectures� where the
costs associated with synchronization and communication vary widely� Implicit
tradeo�s between the costs of various operations are embedded in the source
code �including the data layout scheme� the scheduling strategy� and the degree
of parallelism to be exploited�� and thus are di�cult to discover and change
when porting code from one architecture to another� Third� the dynamic nature
of synchronization and communication makes it di�cult to associate runtime
overhead with speci�c code segments or data structures� Often the cost of an
operation is distributed in time �a write operation by one processor causes a
subsequent invalidation on another� but only at a later synchronization point�
and space �a request by one processor must be satis�ed by another�� making it
di�cult to understand the cause of excessive overhead observed during runtime�

There are many tools that help the programmer in understanding and tun�
ing the performance of parallel applications� Many tools identify the location
of performance problems� For example� Paradyn 	��
 measures performance bot�
tlenecks� and presents the resulting performance information in an abstraction
hierarchy� MTool 	�
 measures the time spent by processors waiting for memory
requests to be satis�ed� and relates memory behavior to code segments� Mem�
Spy 	��
 identi�es the data structures that cause remote memory references� and
classi�es the misses into various categories� such as invalidation misses and re�
placement misses� All of these tools measure performance e�ects and assist the
programmer in �nding the causes of performance degradation� however� the pro�
grammer is responsible for most of the inference process that links an observed
e�ect to a speci�c cause�

There are two tools that focus on cause�and�e�ect relationships� Rajamony
and Cox 	��
 implemented a performance debugger that automatically detects
unnecessary and excessive synchronization by verifying data accesses between
synchronization intervals� StormWatch 	�
 is a visualization tool for memory sys�
tem protocols that presents multiple views of memory access operations� includ�
ing performance slices that capture relationships between individual memory
events� exposing causality in memory operations�

In this paper we present two techniques that help to automate the infer�
ence process between observed performance phenomena and underlying causes
in DSM systems� Waiting time analysis is used to understand the causes of
synchronization overhead� communication analysis is used to understand page
reference and invalidation behavior� These techniques� which have been imple�
mented as part of the Carnival performance visualization tool� can be used to
understand an application�s performance and tune the implementation�

In the next section we present two automated techniques that relate ob�



served performance phenomena �synchronization and communication overhead�
to underlying causes� Section � describes how these techniques are implemented
within Treadmarks �a DSM system� and Carnival �a performance visualization
tool�� Section � shows how to use these techniques to understand and tune the
performance of two Splash applications running under Treadmarks on a cluster
of DEC Alpha stations connected by a DEC memory channel� Section � presents
our conclusions and the directions of our future work�

� Overview of Analysis Techniques

Waiting time analysis and communication analysis are both automated tech�
niques that examine execution traces of DSM programs and produce explana�
tions for parallel overheads in terms of the source code� Waiting time analysis
examines traces to discover the set of basic blocks whose execution delayed one
processor� causing another to wait at a synchronization point� Communication
analysis examines the same traces to discover the access pattern that caused a
page to be invalidated� and subsequently requested by another processor� Both
techniques present the sources of parallel overheads in order of their relative con�
tribution to the running time of the application� and highlight the portions of
source code that must be modi�ed to reduce the overheads� and hence improve
running time�

��� Waiting Time Analysis

Many of the overheads associated with parallelism ultimately manifest them�
selves as waiting time� a processor is idle while it waits for another� Waiting
time can be introduced at any synchronization point� such as locks and barriers�
or whenever a request is issued by one processor that is served by another �e�g��
page faults served remotely��

Consider two processors A and B that synchronize at a barrier� execute for
some period of time� and then synchronize again at the barrier� Assume A arrives
at the barrier before B� We can de�ne the cause of waiting time su�ered by
processor A to be the di�erences in the execution paths of processor A and B
since the last time they synchronized at the barrier� In order to understand why
A must wait for B� we compare the execution paths of the processors leading
up to the synchronization point� and determine why one path is longer than
the other� Anything the two paths have in common is removed as a potential
cause of waiting time� leaving only the di�erences between the two paths as an
explanation for waiting time� These di�erences may represent code segments that
were executed by one processor but not the other� or communication operations
that were required by one processor but not the other�

Waiting time analysis is an automated technique that generates explanations
for waiting time in an execution� �See 	��
 for a detailed description of waiting
time analysis and its use in message�passing systems�� The implementation an�
alyzes execution trace �les� recording each occurrence of waiting time� and the



set of basic blocks traversed by each processor leading up to a synchronization
point� The result of this process is ��� a global execution�time pro�le of the pro�
gram� which describes how much time is devoted to various forms of overhead
�e�g�� load imbalance� contention� insu�cient parallelism� that result in idle pro�
cessors� ��� a waiting time pro�le for each basic block in the program� which
helps to identify portions of the source code that deserve special attention� and
��� an explanation for each source of waiting time in terms of the basic blocks
that must be modi�ed to reduce it�

Waiting time analysis complements pro�ling� which focuses attention on the
code that appears to dominate the execution� but which cannot capture or quan�
tify indirect e�ects on waiting time� Since the source code line at which we ob�
serve idle time may be distant from the actual cause� we need both waiting time
analysis and performance pro�les to isolate and understand the behavior�

��� Communication Analysis

In DSM systems� communication occurs when a page �the granularity supported
by the coherence protocol� is accessed by a processor and that page is not avail�
able locally� The page may not be available because ��� this is the �rst reference
to the page �e�g�� a cold start� or ��� the page was invalidated as a consequence of
write operations by another processor and a subsequent synchronization point�
In order to understand why a page reference results in a remote request� we must
know the operations that preceded the request �e�g�� reads� writes� invalidations��
the ordering and type of operations on a page that precede a remote request are
the cause for that remote request� Analyzing the causes of remote requests is
particularly important in DSM systems employing release consistency� since the
cause of a remote request can involve multiple processors executing di�erent
portions of source code asynchronously�

Communicationanalysis examines the causes for remote requests �either from
the point of view of an individual page or set of pages� or from the point of view
of an individual source code line� and from that information infers the access pat�
tern exhibited by a page or source code line� The access patterns are� ��� single�
producer�single�consumer� ��� single�producer�multiple�consumer� ��� multiple�
producer�single�consumer� ��� multiple�producer�multiple�consumer� ��� migra�
tory� and ��� cold start�

To infer these access patterns� communication analysis uses traces of pro�
gram executions that contain a record of every page fault and synchronization
operation� with a global timestamp for each� Each page fault records the source
code line that generated the fault� the nature of the fault �read or write�� and the
page number� Each synchronization operation records the list of pages that were
invalidated as part of the operation� From these traces� the immediate cause of
each remote request is determined automatically� where an immediate cause is
the invalidation that preceded the page fault� and the write faults that generated
the write notices at the synchronization point�

Requests to a particular page are usually chained �i�e�� one page fault is the
cause of another that happens later in time�� corresponding to the migration of



the page across processors� We represent causality between requests to a page
as a directed graph� called the communication graph� We build this graph for
each page while traversing the trace �le and determining immediate causes for
page faults� The nodes in the graph represent page faults �and their immediate
cause�� and edges in the graph represent causality relationships� There is an edge
between two nodes if the write fault explained by one node generates a write
notice that is an immediate cause for the fault in the other node� We assign
weights to the edges according to the cumulative cost of the communication
operations that the edge represents�

Since we are interested in learning why a processor faulted on a page that
it owned in the past� we trace back through the edges in the graph until we
arrive at a node representing the previous fault on the same page on the same
processor� The explanation for the page fault is the set of paths leading back to
the immediately previous page fault on the same processor�

We can merge explanations to understand reference behavior across pages�
Similar explanations for di�erent pages are combined� allowing us to generalize
the reference behavior at a single source code location� The criteria for similarity
takes into account the relative importance of each edge�s weight in the graph�

The output of this process is� for each data structure� a list of sets of graphs
that provide explanations for the page faults on that data structure� As described
above� each set of graphs represents one or more pages that behave similarly�
These explanations are augmented with communication pro�les� which describe
how the communication costs during execution are distributed among data struc�
tures� source code lines� and causes� With this information� the programmer can
identify the source code� data structures� and access patterns that result in page
requests� and thereby discover optimizations in data layout or scheduling to
improve performance�

It is important to note that communication is a common source of waiting
time� and therefore contributes to overhead both on the processor that performs
the communication� and on any other processor that must wait for the com�
munication to complete� Therefore� reducing the amount of communication can
have the added bene�t of reducing waiting time� so that the total savings during
execution are much larger than the measured communication time� Waiting time
analysis identi�es the communication operations that contribute to waiting time�
communication analysis identi�es the access patterns �and associated pages and
source code lines� that cause communication� so that both communication and
waiting time can be reduced�

� Instrumentation and Visualization

An implementation of waiting time analysis and communication analysis re�
quires that we instrument an execution environment to capture the relevant
trace information� and present the results of the analysis using an appropriate
visualization� We instrumented the Treadmarks DSM system� and use Carni�
val for presentation and visualization� Treadmarks 	�
 is a DSM system for Unix



systems developed at Rice University that uses a lazy release consistency pro�
tocol 	

 to reduce communication and false sharing� Carnival is a performance
analysis and visualization tool developed at the University of Rochester� We
�rst describe the Carnival framework� and then describe our implementations
of waiting time analysis and communication analysis within Treadmarks�

��� Carnival

Carnival is a performance measurement and analysis tool that supports hier�
archical abstraction in the presentation of performance data� maintains links
between dynamic measurements and the source code� and automates cause�and�
e�ect analysis of performance phenomena� Performance analysis with Carnival
consists of four steps� �i� instrumentation� �ii� program execution� �iii� automated
analysis� and �iv� visualization�

During the instrumentation phase a preprocessor uses static information 	��

or user hints� which identify the portions of the code where computation is
replicated� to insert instrumentation calls into the application code� Each call
records the occurrence of an important event� a timestamp� and the basic block
�or data structure� in the source code where the event occurred� We link the
instrumented code to a library that generates events in a trace �le when the
application is executed� After execution� the Carnival preprocessor analyzes
the trace �les� producing a hierarchy of performance pro�les� and explanations
for various performance phenomena� The results of this analysis �both pro�les
and explanations� are examined via a Tcl�Tk 	��
 interface �see �gures � and ���
More details about the visualization resources provided by Carnival can be
found in 	��
�

The instrumentation library is the only architecture�dependent code in Car�
nival� To use Carnival with Treadmarks� we only had to implement a global
clock within Treadmarks �for recording timestamps� and de�ne the relevant pro�
tocol events for our analysis� We implemented a global clock by broadcasting one
processor�s clock value using the DEC Memory Channel 	�
� The accuracy of this
global clock is on the order of tens of microseconds�

The relevant events in Treadmarks include lock operations� barriers� page
requests� and garbage collection� At the application level we record two types
of computation� parallel computation represents parallelized code executed by
each processor on di�erent data� replicated computation represents redundant
execution performed on each processor as a side�e�ect of parallelization� Time
spent during execution is divided into four categories for analysis� ��� computa�
tion� ��� idle time �waiting time�� ��� local protocol overhead� and ��� daemon
overhead caused by remote requests satis�ed locally�

��� Waiting Time Analysis

In Treadmarks� processors may become idle while performing any one of four
operations� ��� lock acquire� �ii� barrier entry� �iii� di��page requests� and �iv�
garbage collection�



We implemented waiting time analysis in Carnival using a pipeline of three
independent tools� The �rst tool in the pipeline takes in trace �le information
and produces as output a pair of execution paths for every instance of waiting
time in the execution� Each pair of matching events �such as the beginning and
end of a Treadmarks library call� becomes a execution step that is identi�ed by
the processor where the events happened� the pro�ling category and location in
the source code� and has a duration associated with it� An execution path is a set
of execution steps� so the size is bounded by the product processors � states �

basic blocks�

Another tool takes as input the list of waiting time steps and the pair of paths
representing each such step� and creates a set of equivalence classes of execution
paths �i�e�� merges equivalent paths�� The output of this tool is a list of waiting
time steps expressed in terms of the representative path for an equivalence class�
The waiting time step de�nes the duration of waiting� the representative path
de�nes the percentage of that duration associated with each execution step on
the path�

Finally� for each instance of waiting time� another tool removes any redundant
steps between the pair of paths that characterizes it� This tool also acts as a �lter
on the set of characterizations� allowing the user to select individual execution
steps for analysis�

��� Communication Analysis

Di�s and page requests are the Treadmarks operations that are the focus of
communication analysis� which is also implemented as a pipeline of tools� The
�rst tool takes as input a trace containing all page�related events �i�e�� page
faults� di� requests� invalidations� and maintains a per�page record of the latest
operations to a�ect a page on each processor� When the tool encounters a request
event in the trace� it outputs a summary of the request �i�e�� processor� source
code location� time to satisfy� and its cause� which is de�ned as the invalidation
location and the preceding write�fault information �i�e�� processor and source
code location��

Another tool takes as input the page request summaries and their causes�
and creates� for each page� a causality graph� where the nodes are locations in
the code and the edges are causal relations� There is an edge from one node
to another if the source location �basic block� associated with the �rst node
caused an access fault in the source location associated with the second node�
Both nodes and edges have attributes� the nodes describe the set of processors
that read or wrote the page� and the access patterns exhibited� while the edges
contain the cumulative request costs and the location of the synchronization
operation that produced the invalidation�

The last tool in the pipeline creates a database of causality graphs� which
summarize the access patterns in the program and the causes of remote page
references� The causality graph for the program merges page causality graphs
that are similar in terms of access patterns and causes� This last tool also creates



the visualization interface for examining the access patterns to data structures
and sets of pages�

��� Visualizing Performance with Carnival

Carnival presents performance pro�les and waiting time analysis in the context
of the source code� It helps the user quickly identify where in the source code
a program spends the majority of its execution time� and where in the code
important sources of parallel overhead are introduced�

The primaryCarnival display window �Figure �a� is divided into two parts�
The source code �with line numbers� is presented on the right� information about
each scope in the source code appears on the left� The line numbers are presented
in a grey scale� where the intensity of the scale represents the percentage of
execution time �summed across all processors� spent on a given line of source
code� Users can quickly identify places in the code where the most time is spent
by scrolling down the line numbers looking for the darkest portion of the scale�
Carnival also provides other pro�ling displays� as described in 	��
�

Two pop�up windows are used for waiting time analysis� The WT Map

�Figures �b and �b� provides a global perspective of all sources of waiting time�
the Characterization Map �Figures �c and �c� presents an explanation for a
single source of waiting time in terms of the two execution paths involved�

The WT Map lists each source of waiting time� the line number at which
waiting occurred� the name of the scope involved� and the percentage of the
total waiting time associated with that scope� The color�coded bar indicates the
nature of the overheads that are causing the waiting time at that scope� such
as load imbalance �LI�� insu�cient parallelism �IP�� and communication and
contention �CC�� This map is used to navigate within the source code window
and to initiate waiting time analysis� Clicking on an entry in the WTMap causes
the main display window to shift to the relevant portion of the source code� and
the WT Map presents statistics about each cause of that waiting time� These
statistics include the percentage contribution of each cause to the total waiting
time experienced at that statement� as well as the total waiting time explained
by each cause�

Clicking on a characterization in the WT Map produces an explanation for
that waiting time in the Characterization Map� Color�coded operations for
the longer of the two paths are presented on the right side of the window� op�
erations for the shorter path are on the left� The number of occurrences of each
operations is given� as is the percentage of the waiting time associated with each
scope� Clicking on an scope shifts the source code window to the relevant portion
of the code�

The programmer inspects the results of communication analysis via the CA
windows �Figure �a�� where information about a variable �or set of pages� is
organized in a table form�

Each causality graph is represented as an incidence matrix� where the column
header identi�es the access pattern �using a color code�� the source code location
of the faults �R for request� I for invalidation� and W for preceding writes�� and



the percentage of total page fault cost in the graph associated with that node�
The entries quantify the relative frequency of transitions between nodes in the
graph� It is also possible to obtain per�processor information by clicking on the
top of each column�

� Examples

In this section we present examples of how Carnival can be used to tune appli�
cations running on Treadmarks� All experiments were performed on a cluster of
eight DEC Alpha Server ���� nodes connected by a DEC Memory Channel 	�
�
Each Alpha Server node has four ��� MHz Alpha processors with ��� Mb of
memory� Applications are linked to an instrumented implementation of Tread�
marks �version ������� which employs DEC�s implementation of TCP�IP on the
Memory Channel�

��� Excessive synchronization in Water

a

c

b

Fig� �� Carnival visualization of Water

Our �rst example examines Water� a molecular dynamics simulation from the
Splash suite 	��
 that is distributed as part of the Treadmarks release� Wa�



ter evaluates forces and potentials that occur over time in a system of water
molecules� It uses one large� shared array to represent the molecules being sim�
ulated�

We executed three iterations of a ��� molecule simulation ofWater on four
processors and collected the execution traces� The execution took ��� seconds of
real time� or ��

 processor seconds� The global execution�time pro�les showed
that almost ��� of the total processor time was spent waiting for locks and
barriers� Waiting time analysis �as shown in the WT Map in Figure �b� shows
three major sources of waiting time� which together account for nearly ��� of
all waiting time in the application �and thus over ��� of the execution time��

�� Nearly half of the total waiting time is associated with the lock acquire op�
erations that control access to individual molecules in the simulation �UP�
DATE FORCES MolLock comp acq�� The explanations produced by wait�
ing time analysis �shown in the Characterization Map of Figure �c� show
that waiting time at a lock acquire operation is not caused by the actions of
another processor �since the left�hand� or negative� side of the explanation
is empty�� it can be attributed almost entirely to the cost of the lock acquire
operation itself �which appears on the right�hand� or positive� side of the
explanation��

�� Roughly one quarter of the total waiting time occurs at a barrier �MD�
MAIN barrier�� The explanation for this waiting time �not shown in the
�gure� is the code associated with initialization� which is serialized and there�
fore produces waiting time on every other processor� Furthermore� the serial�
ized code �which� for simplicity� exploits the same loops used by the parallel
code� and therefore includes unnecessary lock operations� is dominated by
the cost of lock operations�

�� About ��� of the waiting time occurs at a barrier at the end of the routine
INTERF� where processors wait until all the forces are updated� Although
the explanation suggests some load imbalance among the processors in the
function UPDATE FORCES� the majority of the waiting time is again explained
by the cost of acquiring and releasing locks�

Our analysis shows that lock acquire operations are the dominant source
of overhead for Water on Treadmarks� Each acquire operation is expensive
and therefore results in overhead� What is surprising� and is only discovered by
waiting time analysis� is the extent to which expensive lock operations on one
processor indirectly a�ect other processors� which must wait at barriers or other
synchronization points while waiting for a lock acquire to complete elsewhere�

To reduce both the direct and indirect e�ects of locks� we examined the exe�
cution pro�les and the waiting time explanations to identify the source code that
is causing the overhead� Most of the overhead is associated with two lock ac�
quire calls� which are used to update molecule accelerations within an iteration�
Since the modi�cations associated with the lock are only used in a subsequent
iteration� we can modify the program to accumulate the changes locally within
an iteration� and then update the global array of molecules� This modi�cation�



which reduces signi�cantly the number of lock acquire operations and was al�
ready incorporated into Water in the Splash� suite 	��
� improves the execution
time by a factor of �� on four processors�

The original version of Water was written for a shared�memory machine�
where lock operations are relatively cheap and excessive synchronization is a
small price to pay for simplicity� In DSM systems like Treadmarks the tradeo�s
are very di�erent� and locks should be avoided wherever possible� This example
shows that Carnival is particularly helpful in analyzing parallel programs that
are being ported to a DSM system from another architecture� since it identi�es
both direct and indirect consequences of tradeo�s made in one environment� and
identi�es the source code that must be modi�ed to re�ect di�erent tradeo�s in
the new environment�

��� Scheduling and Data Layout in Ocean

c

b

a

Fig� �� Carnival visualization of Ocean

Our second example examines Ocean� an application in the Splash� suite 	��

that models large�scale ocean movements based on eddy and boundary currents�



The original Splash� code was ported to Treadmarks by colleagues at the Federal
University in Rio de Janeiro without any changes to the data layout scheme� We
executed the program on four processors with a grid size of ��
 x ��
� a grid
resolution of ������ and a time between relaxations of �

��� This execution
took ��� seconds�

The global execution�time pro�les show that� for Ocean� processors are idle
for ��� of the overall execution time� while another ��� of the execution time is
spent in the Treadmarks protocol �including garbage collection�� Of the overall
waiting time� about half is spent by processors waiting for page requests to be sat�
is�ed� with the other half spent by processors waiting at a synchronization point�
Waiting time analysis identi�es two parallel loops �relax red eveni ploop � ba�
sic block 

 and relax black eveni ploop � basic block ��� as the source of
most of the page requests� and two barriers as the source of most synchronization
overhead �Figure �b�� Furthermore� the analysis shows �Figure �c� that most
waiting time spent at the barriers is caused by the communication in the loops�
From this analysis we conclude that communication is responsible �directly or
indirectly� for approximately ��� of the overall execution time�

The communication pro�les show that the two parallel loops account for
��� of the overall communication in the program� The pro�les also show that
the variable multi� a shared data structure containing the various grids used in
the red�black Gauss�Seidel multigrid equation solver� is the only shared variable
accessed in those portions of the code� In fact� accesses to multi are responsible
for ��� of the overall communication cost of the application�

At this point in the analysis� we know that the communication costs of two
parallel loops are a major cause of performance degradation and the only variable
involved in this communication is multi� We use communication analysis to
examine the access patterns for multi and discover that each page in this data
structure has multiple producers and multiple consumers �MPMC�� In the graph
presented in Figure �a� we can see that 
�� of the communication costs can be
attributed to a MPMC access pattern �the sum of percentages in columns � and
��� and the two loops are always writing on each page �i�e�� the data written in
basic block 

 is requested by basic block �� and vice�versa�� Furthermore� each
page is always accessed by the same set of processors� An examination of the
two loops reveals that the boundary conditions do not overlap among processors�
and therefore we attribute the MPMC behavior to false sharing�

The Splash� implementation of Ocean adopts a tiling allocation policy to
improve the communication�to�computation ratio 	��
� Under this allocation� less
than two percent of all accesses are to boundary entries shared with another pro�
cessor� However� using a tiling allocation of sub�matrices of ���K each� coupled
with the 
K page size in Treadmarks� means that every access to multi un�
der Treadmarks is a shared access� Since the boundaries of multi sub�matrices
are not aligned on page boundaries� every write access to a page in this data
structure generates an invalidation� Adopting the blocked allocation policy of
the original Splash version of Ocean� and padding sub�arrays to align on 
K
page boundaries� alleviates this problem� and improves the running time on four



processors by a factor of 
�
It is not surprising that a program written for a shared�memory machine

with relatively small units of coherency exhibits false sharing on a DSM system
with large units of coherency� nor is it surprising that padding of data structures
in such a program improves performance on a DSM system� The point of this
example is to illustrate how waiting time analysis and communication analysis
can be used to �nd the sources of excess communication in the source code�
and suggest changes� In this particular example� our analysis lead us to focus
on communication in the two loops� even though a global pro�le would have
suggested a focus on synchronization at two barriers elsewhere in the program�

� Conclusions

In this paper we presented two automated techniques for analyzing the per�
formance of DSM applications� waiting time analysis �which determines the
causes of idle processor cycles� and communication analysis �which determines
the causes of page requests�� We described how these techniques are imple�
mented within Carnival� a performance visualization tool� and Treadmarks� a
DSM system� We used the Carnival interface and our techniques to analyze
the performance of two Splash applications� Water and Ocean� on a DEC Alpha
implementation of Treadmarks� Our experience demonstrates that these tech�
niques can be used e�ectively to understand the causes of poor performance�
and to identify speci�c improvements in the source code�

We are continuing to analyze applications using these techniques� to better
understand the limits of our techniques� and to improve the way in which per�
formance information is presented to the user by Carnival� Furthermore� we
plan to compare the performance of applications under Treadmarks and Cash�
mere 	�
 �a DSM system under development at Rochester�� and consider how
best to apply our techniques to understanding tradeo�s in the protocols�

Acknowledgements

We would like to thank Sandhya Dwarkadas for her comments on this work�
We also would like to thank Cristiana Seidel and Lauro Whately of the Federal
University in Rio de Janeiro for the Treadmarks version of Ocean�

References

�� C� Amza� A� Cox� S� Dwarkadas� P� Keleher� H� Lu� R� Rajamony� W� Yu� and
W� Zwaenepoel� Treadmarks� shared memory computing on networks of work�
stations� IEEE Computer� February �		��

�� R� Bianchini� L� Kontothanassis�
R� Pinto� M� De Maria� M� Abud� and C� Amorim� Hiding communication latency
and coherence overhead in software DSMs� In Proceedings of the �th International
Conference on Architectural Support for Programming Languages and Operating
Systems� Boston�MA� October �		��



�� M� Blumrich� C� Dubnicki� E� Felten� K� Li� and M� Mesarina� Virtual�memory�
mapped network interfaces� IEEE Micro� �

��������� February �		
�

�� T� Chilimbi� T� Ball� S� Eick� and J� Larus� Stormwatch� A tool for visualizing
memory system protocols� In Proceedings of Supercomputing���� San Diego� CA�
December �		
� IEEE�


� R� Gillett� Memory channel network for PCI� IEEE Micro� pages ������ February
�		��

�� A� Goldberg and J� Hennessy� MTool�an integrated system for performance debug�
ging shared memory multiprocessor applications� IEEE Transactions on Parallel
and Distributed Systems� �
��������� January �		��

�� L� Iftode� C� Dubnicki� E� Felten� and K� Li� Improving release�consistent shared
virtual memory using automatic update� In Proceedings of the �nd IEEE Sympo�
sium on High�Performance Computing Architecture� IEEE� February �		��

�� P� Keleher� A� Cox� and W� Zwaenepoel� Lazy release consistency for software
distributed shared memory� In Proceedings of the ��th International Symposium
on Computer Architecture� pages ������ Gold Coast� Australia� May �		�� ACM�

	� L� Kontothanassis and M� Scott� High performance software coherence for current
and future architectures� Journal of Parallel and Distributed Computing� �	���	�
�	
� November �		
�

��� M� Martonosi� A� Gupta� and T� Anderson� Memspy� Analyzing memory system
bottlenecks in programs� Performance Evaluation Review� ��
���� � ��� June �		��
Reprint of a paper presented in Sigmetrics� 	��

��� W� Meira Jr�� T� LeBlanc� and A� Poulos� Waiting time analysis and performance
visualization in Carnival� In Proceedings of SPDT�	
 SIGMETRICS Symposium
on Parallel and Distributed Tools� pages ����� Philadelphia� PA� May �		�� ACM�

��� B� P� Miller� M� D� Callaghan� J� M� Cargille� J� K� Hollingsworth� R� B� Irvin�
K� L� Karavanic� K� Kunchithapadam� and T� Newhall� The Paradyn parallel per�
formance measurement tool� IEEE Computer� ��
���������� November �		
�

��� John K� Ousterhout� Tcl and Tk Toolkit� Addison Wesley� �		��
��� R� Rajamony and A� Cox� A performance debugger for eliminating excess syn�

chronization in shared�memory parallel programs� In Proceedings of the �th In�
ternational Workshop on Modeling� Analysis� and Simulation of COmputer and
Telecommunication Systems 
MASCOTS�� February �		��

�
� J� P� Singh� W� Weber� and A� Gupta� SPLASH� Stanford parallel applications for
shared memory� Computer Architecture News� ��
���
���� March �		��

��� S� Woo� M� Ohara� E� Torrie� J� Singh� and A� Gupta� The SPLASH�� programs�
Characterization and methodological considerations� In Proceedings of the ��nd
Annual International Symposium on Computer Architecture� pages ������ Santa
Margherita Ligure� Italy� June �		
� ACM�

This article was processed using the LaTEX macro package with LLNCS style


