From Proceeedings of the Workshop on Communication and Architectural Support

for Network-based Parallel Computing (CANPC’ 97), San Antonio, TX, February 97.

Understanding the Performance of DSM
Applications *

Wagner Meira Jr.! Thomas J. LeBlanc® Nikolaos Hardavellas!
Claudio Amorim?

! Department of Computer Science, University of Rochester, Rochester — NY — 14627
{meira,leblanc,nikolaos}@cs.rochester.edu
2 COPPE Systems Engineering, UFRJ, Rio de Janeiro, Brazil — 21945-970
amorim@cos.ufrj.br

Abstract. Carnival is a performance measurement and analysis tool
that assists users in understanding the performance of DSM applications
and protocols. Using traces of program executions, Carnival presents
performance data as a hierarchy of execution profiles. During analysis,
Carnival automates the inference process that relates performance phe-
nomena to specific causes in the source code or DSM protocol using
techniques that focus on the two most important sources of overhead in
DSM systems: watting time analysisidentifies the causes of synchroniza-
tion overhead, and produces an explanation for each source of waiting
time in the program; communication analysis identifies the sequence of
requests that result in invalidations, and produces an explanation for
each source of communication. We describe these techniques and their
implementation in TreadMarks, and show how to use waiting time anal-
ysis and communication analysis to improve the running time of two
programs from the SPLLASH application suite when executed on DEC
Alphas connected by a DEC Memory Channel network.

1 Introduction

Shared memory is an attractive programming model because it is easier to use
than a distributed-memory model. Software DSM (distributed shared memory)
systems offer the simplicity of the shared-memory programming model on cost-
effective distributed-memory architectures (including networks of workstations).
Although early DSM systems could only provide good performance for a limited
class of applications, recent advances at both the protocol level [8, 7, 9] and the
architecture level [5, 2, 3] have made DSM a practical and cost effective approach
to parallel computing. Nonetheless, synchronization and communication are still
major sources of performance degradation in DSM systems.

* This research was supported by NSF grant CCR-9510173, an NSF CISE Institutional
Infrastructure Grant No. CDA-9401142, and an equipment grant from Digital Equip-
ment Corporation’s External Research Program. Wagner Meira Jr. is supported by
CNPg-Brazil, Grant 200.862/93-6. Cldudio Amorim is a visiting professor at the
University of Rochester and is supported by CAPES, Brazil.

Reducing or eliminating synchronization and communication in DSM systems
is complicated by several factors. First, communication in a DSM system 1is
dictated by the details of the coherence protocol, and therefore is not under the
direct control of the user. As a result, the relationship between shared-memory
references in the source code and the resulting frequency of invalidations, page
requests, and diffs may not be understood by the programmer. Second, DSM
systems support the shared-memory model on a range of architectures, where the
costs associated with synchronization and communication vary widely. Implicit
tradeoffs between the costs of various operations are embedded in the source
code (including the data layout scheme, the scheduling strategy, and the degree
of parallelism to be exploited), and thus are difficult to discover and change
when porting code from one architecture to another. Third, the dynamic nature
of synchronization and communication makes it difficult to associate runtime
overhead with specific code segments or data structures. Often the cost of an
operation is distributed in time (a write operation by one processor causes a
subsequent invalidation on another, but only at a later synchronization point)
and space (a request by one processor must be satisfied by another), making it
difficult to understand the cause of excessive overhead observed during runtime.

There are many tools that help the programmer in understanding and tun-
ing the performance of parallel applications. Many tools identify the location
of performance problems. For example, Paradyn [12] measures performance bot-
tlenecks, and presents the resulting performance information in an abstraction
hierarchy. MTool [6] measures the time spent by processors waiting for memory
requests to be satisfied, and relates memory behavior to code segments. Mem-
Spy [10] identifies the data structures that cause remote memory references; and
classifies the misses into various categories, such as invalidation misses and re-
placement misses. All of these tools measure performance effects and assist the
programmer in finding the causes of performance degradation; however, the pro-
grammer is responsible for most of the inference process that links an observed
effect to a specific cause.

There are two tools that focus on cause-and-effect relationships. Rajamony
and Cox [14] implemented a performance debugger that automatically detects
unnecessary and excessive synchronization by verifying data accesses between
synchronization intervals. StormWatch [4] is a visualization tool for memory sys-
tem protocols that presents multiple views of memory access operations, includ-
ing performance slices that capture relationships between individual memory
events, exposing causality in memory operations.

In this paper we present two techniques that help to automate the infer-
ence process between observed performance phenomena and underlying causes
in DSM systems. Waiting time analysis is used to understand the causes of
synchronization overhead; communication analysis is used to understand page
reference and invalidation behavior. These techniques, which have been imple-
mented as part of the Carnival performance visualization tool, can be used to
understand an application’s performance and tune the implementation.

In the next section we present two automated techniques that relate ob-

served performance phenomena (synchronization and communication overhead)
to underlying causes. Section 3 describes how these techniques are implemented
within Treadmarks (a DSM system) and Carnival (a performance visualization
tool). Section 4 shows how to use these techniques to understand and tune the
performance of two Splash applications running under Treadmarks on a cluster
of DEC Alpha stations connected by a DEC memory channel. Section 5 presents
our conclusions and the directions of our future work.

2 Overview of Analysis Techniques

Waiting time analysis and communication analysis are both automated tech-
niques that examine execution traces of DSM programs and produce explana-
tions for parallel overheads in terms of the source code. Waiting time analysis
examines traces to discover the set of basic blocks whose execution delayed one
processor, causing another to wait at a synchronization point. Communication
analysis examines the same traces to discover the access pattern that caused a
page to be invalidated, and subsequently requested by another processor. Both
techniques present the sources of parallel overheads in order of their relative con-
tribution to the running time of the application, and highlight the portions of
source code that must be modified to reduce the overheads, and hence improve
running time.

2.1 Waiting Time Analysis

Many of the overheads associated with parallelism ultimately manifest them-
selves as waiting time; a processor is idle while it waits for another. Waiting
time can be introduced at any synchronization point, such as locks and barriers,
or whenever a request is issued by one processor that is served by another (e.g.,
page faults served remotely).

Consider two processors A and B that synchronize at a barrier, execute for
some period of time, and then synchronize again at the barrier. Assume A arrives
at the barrier before B. We can define the cause of waiting time suffered by
processor A to be the differences in the execution paths of processor A and B
since the last time they synchronized at the barrier. In order to understand why
A must wait for B, we compare the execution paths of the processors leading
up to the synchronization point, and determine why one path is longer than
the other. Anything the two paths have in common is removed as a potential
cause of waiting time, leaving only the differences between the two paths as an
explanation for waiting time. These differences may represent code segments that
were executed by one processor but not the other, or communication operations
that were required by one processor but not the other.

Waiting time analysis is an automated technique that generates explanations
for waiting time in an execution. (See [11] for a detailed description of waiting
time analysis and its use in message-passing systems.) The implementation an-
alyzes execution trace files, recording each occurrence of waiting time, and the

set of basic blocks traversed by each processor leading up to a synchronization
point. The result of this process is (1) a global execution-time profile of the pro-
gram, which describes how much time is devoted to various forms of overhead
(e.g., load imbalance, contention, insufficient parallelism) that result in idle pro-
cessors; (2) a waiting time profile for each basic block in the program, which
helps to identify portions of the source code that deserve special attention; and
(3) an explanation for each source of waiting time in terms of the basic blocks
that must be modified to reduce it.

Waiting time analysis complements profiling, which focuses attention on the
code that appears to dominate the execution, but which cannot capture or quan-
tify indirect effects on waiting time. Since the source code line at which we ob-
serve idle time may be distant from the actual cause, we need both waiting time
analysis and performance profiles to isolate and understand the behavior.

2.2 Communication Analysis

In DSM systems, communication occurs when a page (the granularity supported
by the coherence protocol) is accessed by a processor and that page is not avail-
able locally. The page may not be available because (1) this is the first reference
to the page (e.g., a cold start) or (2) the page was invalidated as a consequence of
write operations by another processor and a subsequent synchronization point.
In order to understand why a page reference results in a remote request, we must
know the operations that preceded the request (e.g., reads, writes, invalidations);
the ordering and type of operations on a page that precede a remote request are
the cause for that remote request. Analyzing the causes of remote requests is
particularly important in DSM systems employing release consistency, since the
cause of a remote request can involve multiple processors executing different
portions of source code asynchronously.

Communication analysis examines the causes for remote requests (either from
the point of view of an individual page or set of pages, or from the point of view
of an individual source code line) and from that information infers the access pat-
tern exhibited by a page or source code line. The access patterns are: (1) single-
producer-single-consumer, (2) single-producer-multiple-consumer, (3) multiple-
producer-single-consumer, (4) multiple-producer-multiple-consumer, (5) migra-
tory, and (6) cold start.

To infer these access patterns, communication analysis uses traces of pro-
gram executions that contain a record of every page fault and synchronization
operation, with a global timestamp for each. Each page fault records the source
code line that generated the fault, the nature of the fault (read or write), and the
page number. Each synchronization operation records the list of pages that were
invalidated as part of the operation. From these traces, the immediate cause of
each remote request is determined automatically, where an immediate cause is
the invalidation that preceded the page fault, and the write faults that generated
the write notices at the synchronization point.

Requests to a particular page are usually chained (i.e., one page fault is the
cause of another that happens later in time), corresponding to the migration of

the page across processors. We represent causality between requests to a page
as a directed graph, called the communication graph. We build this graph for
each page while traversing the trace file and determining immediate causes for
page faults. The nodes in the graph represent page faults (and their immediate
cause), and edges in the graph represent causality relationships. There is an edge
between two nodes if the write fault explained by one node generates a write
notice that is an immediate cause for the fault in the other node. We assign
weights to the edges according to the cumulative cost of the communication
operations that the edge represents.

Since we are interested in learning why a processor faulted on a page that
it owned in the past, we trace back through the edges in the graph until we
arrive at a node representing the previous fault on the same page on the same
processor. The explanation for the page fault is the set of paths leading back to
the immediately previous page fault on the same processor.

We can merge explanations to understand reference behavior across pages.
Similar explanations for different pages are combined, allowing us to generalize
the reference behavior at a single source code location. The criteria for similarity
takes into account the relative importance of each edge’s weight in the graph.

The output of this process is, for each data structure, a list of sets of graphs
that provide explanations for the page faults on that data structure. As described
above, each set of graphs represents one or more pages that behave similarly.
These explanations are augmented with communication profiles, which describe
how the communication costs during execution are distributed among data struc-
tures, source code lines, and causes. With this information, the programmer can
identify the source code, data structures, and access patterns that result in page
requests, and thereby discover optimizations in data layout or scheduling to
improve performance.

It is important to note that communication is a common source of waiting
time, and therefore contributes to overhead both on the processor that performs
the communication, and on any other processor that must wait for the com-
munication to complete. Therefore, reducing the amount of communication can
have the added benefit of reducing waiting time, so that the total savings during
execution are much larger than the measured communication time. Waiting time
analysis identifies the communication operations that contribute to waiting time;
communication analysis identifies the access patterns (and associated pages and
source code lines) that cause communication, so that both communication and
waiting time can be reduced.

3 Instrumentation and Visualization

An implementation of waiting time analysis and communication analysis re-
quires that we instrument an execution environment to capture the relevant
trace information, and present the results of the analysis using an appropriate
visualization. We instrumented the Treadmarks DSM system, and use Carni-
val for presentation and visualization. Treadmarks [1] is a DSM system for Unix

systems developed at Rice University that uses a lazy release consistency pro-
tocol [8] to reduce communication and false sharing. Carnival is a performance
analysis and visualization tool developed at the University of Rochester. We
first describe the Carnival framework, and then describe our implementations
of waiting time analysis and communication analysis within Treadmarks.

3.1 Carnival

Carnival is a performance measurement and analysis tool that supports hier-
archical abstraction in the presentation of performance data, maintains links
between dynamic measurements and the source code, and automates cause-and-
effect analysis of performance phenomena. Performance analysis with Carnival
consists of four steps: (i) instrumentation, (ii) program execution, (iii) automated
analysis, and (iv) visualization.

During the instrumentation phase a preprocessor uses static information [11]
or user hints, which identify the portions of the code where computation is
replicated, to insert instrumentation calls into the application code, Each call
records the occurrence of an important event, a timestamp, and the basic block
(or data structure) in the source code where the event occurred. We link the
instrumented code to a library that generates events in a trace file when the
application is executed. After execution, the Carnival preprocessor analyzes
the trace files, producing a hierarchy of performance profiles, and explanations
for various performance phenomena. The results of this analysis (both profiles
and explanations) are examined via a Tcl/Tk [13] interface (see figures 1 and 2).
More details about the visualization resources provided by Carnival can be
found in [11].

The instrumentation library is the only architecture-dependent code in Car-
nival. To use Carnival with Treadmarks, we only had to implement a global
clock within Treadmarks (for recording timestamps) and define the relevant pro-
tocol events for our analysis. We implemented a global clock by broadcasting one
processor’s clock value using the DEC Memory Channel [5]. The accuracy of this
global clock is on the order of tens of microseconds.

The relevant events in Treadmarks include lock operations, barriers, page
requests, and garbage collection. At the application level we record two types
of computation: parallel computation represents parallelized code executed by
each processor on different data; replicated computation represents redundant
execution performed on each processor as a side-effect of parallelization. Time
spent during execution is divided into four categories for analysis: (1) computa-
tion, (2) idle time (waiting time), (3) local protocol overhead, and (4) daemon
overhead caused by remote requests satisfied locally.

3.2 Waiting Time Analysis

In Treadmarks, processors may become idle while performing any one of four
operations: (1) lock acquire, (ii) barrier entry, (iii) diff/page requests, and (iv)
garbage collection.

We implemented waiting time analysis in Carnival using a pipeline of three
independent tools. The first tool in the pipeline takes in trace file information
and produces as output a pair of execution paths for every instance of waiting
time in the execution. Each pair of matching events (such as the beginning and
end of a Treadmarks library call) becomes a execution step that is identified by
the processor where the events happened, the profiling category and location in
the source code, and has a duration associated with it. An execution path is a set
of execution steps, so the size is bounded by the product processors x states x
basic blocks.

Another tool takes as input the list of waiting time steps and the pair of paths
representing each such step, and creates a set of equivalence classes of execution
paths (i.e., merges equivalent paths). The output of this tool is a list of waiting
time steps expressed in terms of the representative path for an equivalence class.
The waiting time step defines the duration of waiting; the representative path
defines the percentage of that duration associated with each execution step on
the path.

Finally, for each instance of waiting time, another tool removes any redundant
steps between the pair of paths that characterizes it. This tool also acts as a filter
on the set of characterizations, allowing the user to select individual execution
steps for analysis.

3.3 Communication Analysis

Diffs and page requests are the Treadmarks operations that are the focus of
communication analysis, which is also implemented as a pipeline of tools. The
first tool takes as input a trace containing all page-related events (i.e., page
faults, diff requests, invalidations) and maintains a per-page record of the latest
operations to affect a page on each processor. When the tool encounters a request
event in the trace, it outputs a summary of the request (i.e., processor, source
code location, time to satisfy) and its cause, which is defined as the invalidation
location and the preceding write-fault information (i.e., processor and source
code location).

Another tool takes as input the page request summaries and their causes,
and creates, for each page, a causality graph, where the nodes are locations in
the code and the edges are causal relations. There is an edge from one node
to another if the source location (basic block) associated with the first node
caused an access fault in the source location associated with the second node.
Both nodes and edges have attributes; the nodes describe the set of processors
that read or wrote the page, and the access patterns exhibited, while the edges
contain the cumulative request costs and the location of the synchronization
operation that produced the invalidation.

The last tool in the pipeline creates a database of causality graphs, which
summarize the access patterns in the program and the causes of remote page
references. The causality graph for the program merges page causality graphs
that are similar in terms of access patterns and causes. This last tool also creates

the visualization interface for examining the access patterns to data structures
and sets of pages.

3.4 Visualizing Performance with Carnival

Carnival presents performance profiles and waiting time analysis in the context
of the source code. It helps the user quickly identify where in the source code
a program spends the majority of its execution time, and where in the code
important sources of parallel overhead are introduced.

The primary Carnival display window (Figure 1a) is divided into two parts.
The source code (with line numbers) is presented on the right; information about
each scope in the source code appears on the left. The line numbers are presented
in a grey scale, where the intensity of the scale represents the percentage of
execution time (summed across all processors) spent on a given line of source
code. Users can quickly identify places in the code where the most time is spent
by scrolling down the line numbers looking for the darkest portion of the scale.
Carnival also provides other profiling displays, as described in [11].

Two pop-up windows are used for waiting time analysis. The WT Map
(Figures 1b and 2b) provides a global perspective of all sources of waiting time;
the Characterization Map (Figures lc and 2c¢) presents an explanation for a
single source of waiting time in terms of the two execution paths involved.

The WT Map lists each source of waiting time, the line number at which
waiting occurred, the name of the scope involved, and the percentage of the
total waiting time associated with that scope. The color-coded bar indicates the
nature of the overheads that are causing the waiting time at that scope, such
as load imbalance (LI), insufficient parallelism (IP), and communication and
contention (CC). This map is used to navigate within the source code window
and to initiate waiting time analysis. Clicking on an entry in the WT Map causes
the main display window to shift to the relevant portion of the source code, and
the WT Map presents statistics about each cause of that waiting time. These
statistics include the percentage contribution of each cause to the total waiting
time experienced at that statement, as well as the total waiting time explained
by each cause.

Clicking on a characterization in the WT Map produces an explanation for
that waiting time in the Characterization Map. Color-coded operations for
the longer of the two paths are presented on the right side of the window, op-
erations for the shorter path are on the left. The number of occurrences of each
operations is given, as is the percentage of the waiting time associated with each
scope. Clicking on an scope shifts the source code window to the relevant portion
of the code.

The programmer inspects the results of communication analysis via the CA
windows (Figure 2a), where information about a variable (or set of pages) is
organized in a table form.

Each causality graph is represented as an incidence matrix, where the column
header identifies the access pattern (using a color code), the source code location
of the faults (R for request, I for invalidation, and W for preceding writes), and

the percentage of total page fault cost in the graph associated with that node.
The entries quantify the relative frequency of transitions between nodes in the
graph. It is also possible to obtain per-processor information by clicking on the
top of each column.

4 Examples

In this section we present examples of how Carnival can be used to tune appli-
cations running on Treadmarks. All experiments were performed on a cluster of
eight DEC Alpha Server 2100 nodes connected by a DEC Memory Channel [5].
Each Alpha Server node has four 233 MHz Alpha processors with 256 Mb of
memory. Applications are linked to an instrumented implementation of Tread-
marks (version 0.9.6), which employs DEC’s implementation of TCP/IP on the
Memory Channel.

4.1 Excessive synchronization in Water

H Mater_512Mols_dprocs H]
- N '- Performance Understanding System CA| Setup | Quit

Cloc Wloc PLoc Xloc

1P MP | 5 o
J LI MP [HTNES ¢l cc P MP_cc Annag
Summary

Importance Line Identifier |
48 o521 I 193 UPDATE_FORCES_MolLock_comp_acq A

257912 18 MDMAIN_barier
14,0663] N 165 INTERF _glinterfBar_barrier
5199 | I (i s UPDATE_FORCES_func _|

4,945] I 153

INTERF _mol_ploop1
UPDATE FORCES Mollock

mol acy

Nater‘ B12Hols_dprocs - Charac Map - UPDATE_FORCES_Mollock_comp_acq at 193 - Global Summary E

Line Op Occur = + Occur__ Imp i
[158 INTERF_glinterfVirLock_acq 3 0.000%| |
168 INTERF _glinterfBar_barrier 3956 0.40%
C——

180 UPDATE_FORCES_func 17500 2.307%
183 UPDATE_FORCES_MolLock_mol_acq 16855 2.069%
188 UPDATE_FORCES_MolLock_mol_rel 9696 1.161%
193 UPDATE_FORCES_MolLock_comp_acq 182169 91608 J
198 UPDATE_FORCES_MolLock_comp_rel 9175 1.095%

Fig. 1. Carnival visualization of Water

Our first example examines Water, a molecular dynamics simulation from the
Splash suite [15] that is distributed as part of the Treadmarks release. Wa-

ter evaluates forces and potentials that occur over time in a system of water
molecules. It uses one large, shared array to represent the molecules being sim-
ulated.

We executed three iterations of a 512 molecule simulation of Water on four
processors and collected the execution traces. The execution took 272 seconds of
real time, or 1088 processor seconds. The global execution-time profiles showed
that almost 60% of the total processor time was spent waiting for locks and
barriers. Waiting time analysis (as shown in the WT Map in Figure 1b) shows
three major sources of waiting time, which together account for nearly 90% of
all waiting time in the application (and thus over 50% of the execution time):

1. Nearly half of the total waiting time is associated with the lock acquire op-
erations that control access to individual molecules in the simulation (UP-
DATE_FORCES_MolLock_comp_acq). The explanations produced by wait-
ing time analysis (shown in the Characterization Map of Figure l¢) show
that waiting time at a lock acquire operation is not caused by the actions of
another processor (since the left-hand, or negative, side of the explanation
is empty); it can be attributed almost entirely to the cost of the lock acquire
operation itself (which appears on the right-hand, or positive, side of the
explanation).

2. Roughly one quarter of the total waiting time occurs at a barrier (MD-
MAIN_barrier). The explanation for this waiting time (not shown in the
figure) is the code associated with initialization, which is serialized and there-
fore produces waiting time on every other processor. Furthermore, the serial-
ized code (which, for simplicity, exploits the same loops used by the parallel
code, and therefore includes unnecessary lock operations) is dominated by
the cost of lock operations.

3. About 14% of the waiting time occurs at a barrier at the end of the routine
INTERF, where processors wait until all the forces are updated. Although
the explanation suggests some load imbalance among the processors in the
function UPDATE FORCES, the majority of the waiting time is again explained
by the cost of acquiring and releasing locks.

Our analysis shows that lock acquire operations are the dominant source
of overhead for Water on Treadmarks. Each acquire operation is expensive
and therefore results in overhead. What is surprising, and 1s only discovered by
waiting time analysis, 1s the extent to which expensive lock operations on one
processor indirectly affect other processors, which must wait at barriers or other
synchronization points while waiting for a lock acquire to complete elsewhere.

To reduce both the direct and indirect effects of locks, we examined the exe-
cution profiles and the waiting time explanations to identify the source code that
is causing the overhead. Most of the overhead is associated with two lock ac-
quire calls, which are used to update molecule accelerations within an iteration.
Since the modifications associated with the lock are only used in a subsequent
iteration, we can modify the program to accumulate the changes locally within
an iteration, and then update the global array of molecules. This modification,

which reduces significantly the number of lock acquire operations and was al-
ready incorporated into Water in the Splash2 suite [16], improves the execution
time by a factor of 17 on four processors.

The original version of Water was written for a shared-memory machine,
where lock operations are relatively cheap and excessive synchronization is a
small price to pay for simplicity. In DSM systems like Treadmarks the tradeoffs
are very different, and locks should be avoided wherever possible. This example
shows that Carnival is particularly helpful in analyzing parallel programs that
are being ported to a DSM system from another architecture, since it 1dentifies
both direct and indirect consequences of tradeoffs made in one environment, and
identifies the source code that must be modified to reflect different tradeoffs in
the new environment.

4.2 Scheduling and Data Layout in Ocean

[®] B Ocean_2SEHI56_dprocs - Graph 948]
MIGR NY[Is FfMPME | COLD .Hli-U_pI DownlDismiss A
a Dest
| 2
38 90 waan___ 88 90
§2 R 90 35 R 88 183 R 88 52 R 90 35 R 88
63,40 g 7.04% b |
Src
| 2.74%
1.29%
[®] 8 Ocean_256¥256_dprocs - WT Map |
b—- IP LI G | WP S IP_LI IP MP |l
Ll Cl LI MP [N Cl CC s MP CC BNiiSg
Summary
Importance Line BB Identifier |
12.s98: | I | a9 88 relax_red_eveni_ploop A
12,254] I 17 82 multiy_barrier_alired |
122042 I - 32 85 multig_barrier_chkerr
10331 | I e sa so velax_black_eveni_ploop
C— [®] 0Ocean_256X256_4procs - Charac Map - multig_barrier_chkerr at 32 - Global Summary E
Line Op Occur - + Occur Imp
17 multig_barrier_allred 11836 52116 -55H
22 multig_lockacy_ervor_lock §286 93750 7.589%
27 multig_lockrel_error_lock 1852 13119 -1.360
32 multig_barrier_chkerr 3351 148969 33424
46 relax 16 ~0.005:
59 relax_black_eveni_ploop 468141 IR [T 5025933 65.034

Fig. 2. Carnival visualization of Ocean

Our second example examines Ocean, an application in the Splash?2 suite [16]
that models large-scale ocean movements based on eddy and boundary currents.

The original Splash2 code was ported to Treadmarks by colleagues at the Federal
University in Rio de Janeiro without any changes to the data layout scheme. We
executed the program on four processors with a grid size of 258 x 258, a grid
resolution of 20000, and a time between relaxations of 28800. This execution
took 151 seconds.

The global execution-time profiles show that, for Ocean, processors are idle
for 60% of the overall execution time, while another 31% of the execution time is
spent in the Treadmarks protocol (including garbage collection). Of the overall
waiting time, about half is spent by processors waiting for page requests to be sat-
isfied, with the other half spent by processors waiting at a synchronization point.
Waiting time analysis identifies two parallel loops (relax_red_eveni ploop — ba-
sic block 88 and relax black_eveni_ploop — basic block 90) as the source of
most of the page requests, and two barriers as the source of most synchronization
overhead (Figure 2b). Furthermore, the analysis shows (Figure 2¢) that most
waiting time spent at the barriers is caused by the communication in the loops.
From this analysis we conclude that communication is responsible (directly or
indirectly) for approximately 75% of the overall execution time.

The communication profiles show that the two parallel loops account for
62% of the overall communication in the program. The profiles also show that
the variable multi, a shared data structure containing the various grids used in
the red-black Gauss-Seidel multigrid equation solver, is the only shared variable
accessed 1n those portions of the code. In fact, accesses to multi are responsible
for 75% of the overall communication cost of the application.

At this point in the analysis, we know that the communication costs of two
parallel loops are a major cause of performance degradation and the only variable
involved in this communication is multi. We use communication analysis to
examine the access patterns for multi and discover that each page in this data
structure has multiple producers and multiple consumers (MPMC). In the graph
presented in Figure 2a, we can see that 86% of the communication costs can be
attributed to a MPMC access pattern (the sum of percentages in columns 0 and
1), and the two loops are always writing on each page (i.e., the data written in
basic block 88 is requested by basic block 90 and vice-versa). Furthermore, each
page is always accessed by the same set of processors. An examination of the
two loops reveals that the boundary conditions do not overlap among processors,
and therefore we attribute the MPMC behavior to false sharing.

The Splash2 implementation of Ocean adopts a tiling allocation policy to
improve the communication-to-computation ratio [16]. Under this allocation, less
than two percent of all accesses are to boundary entries shared with another pro-
cessor. However, using a tiling allocation of sub-matrices of 500K each, coupled
with the 8K page size in Treadmarks, means that every access to multi un-
der Treadmarks is a shared access. Since the boundaries of multi sub-matrices
are not aligned on page boundaries, every write access to a page in this data
structure generates an invalidation. Adopting the blocked allocation policy of
the original Splash version of Ocean, and padding sub-arrays to align on 8K
page boundaries, alleviates this problem, and improves the running time on four

processors by a factor of 8.

It is not surprising that a program written for a shared-memory machine
with relatively small units of coherency exhibits false sharing on a DSM system
with large units of coherency, nor is it surprising that padding of data structures
in such a program improves performance on a DSM system. The point of this
example is to illustrate how waiting time analysis and communication analysis
can be used to find the sources of excess communication in the source code,
and suggest changes. In this particular example, our analysis lead us to focus
on communication in the two loops, even though a global profile would have
suggested a focus on synchronization at two barriers elsewhere in the program.

5 Conclusions

In this paper we presented two automated techniques for analyzing the per-
formance of DSM applications: waiting time analysis (which determines the
causes of idle processor cycles) and communication analysis (which determines
the causes of page requests). We described how these techniques are imple-
mented within Carnival, a performance visualization tool, and Treadmarks, a
DSM system. We used the Carnival interface and our techniques to analyze
the performance of two Splash applications, Water and Ocean, on a DEC Alpha
implementation of Treadmarks. Qur experience demonstrates that these tech-
niques can be used effectively to understand the causes of poor performance,
and to identify specific improvements in the source code.

We are continuing to analyze applications using these techniques, to better
understand the limits of our techniques, and to improve the way in which per-
formance information is presented to the user by Carnival. Furthermore, we
plan to compare the performance of applications under Treadmarks and Cash-
mere [9] (a DSM system under development at Rochester), and consider how
best to apply our techniques to understanding tradeoffs in the protocols.

Acknowledgements

We would like to thank Sandhya Dwarkadas for her comments on this work.
We also would like to thank Cristiana Seidel and Lauro Whately of the Federal
University in Rio de Janeiro for the Treadmarks version of Ocean.

References

1. C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
W. Zwaenepoel. Treadmarks: shared memory computing on networks of work-
stations. IFEE Computer, February 1996.

2. R. Bianchini, L. Kontothanassis,
R. Pinto, M. De Maria, M. Abud, and C. Amorim. Hiding communication latency
and coherence overhead in software DSMs. In Proceedings of the 7th International
Conference on Architectural Support for Programming Languages and Operating
Systems, Boston,MA, October 1996.

10.

11.

12.

13.
14.

15.

16.

M. Blumrich, C. Dubnicki, E. Felten, K. Li, and M. Mesarina. Virtual-memory-
mapped network interfaces. TEEE Micro, 15(2):21-28, February 1995.
T. Chilimbi, T. Ball, S. Eick, and J. Larus. Stormwatch: A tool for visualizing

memory system protocols. In Proceedings of Supercomputing’95, San Diego, CA,

December 1995. IEEE.

. R. Gillett. Memory channel network for PCI. TEFE Micro, pages 12—-18, February

1996.

A. Goldberg and J. Hennessy. MTool:an integrated system for performance debug-
ging shared memory multiprocessor applications. [FEE Transactions on Parallel
and Distributed Systems, 4(1):28-40, January 1993.

L. Iftode, C. Dubnicki, E. Felten, and K. Li. Improving release-consistent shared
virtual memory using automatic update. In Proceedings of the 2nd IEFE Sympo-
seum on High-Performance Computing Architecture. IEEE, February 1996.

P. Keleher, A. Cox, and W. Zwaenepoel. Lazy release consistency for software
distributed shared memory. In Proceedings of the 19th International Symposium
on Computer Architecture, pages 13-21, Gold Coast, Australia, May 1992. ACM.
L. Kontothanassis and M. Scott. High performance software coherence for current
and future architectures. Journal of Parallel and Distributed Computing, 29:179—
195, November 1995.

M. Martonosi, A. Gupta, and T. Anderson. Memspy: Analyzing memory system
bottlenecks in programs. Performance Evaluation Review, 20(1):1 — 12, June 1992.
Reprint of a paper presented in Sigmetrics’ 92.

W. Meira Jr., T. LeBlanc, and A. Poulos. Waiting time analysis and performance
visualization in Carnival. In Proceedings of SPDT96: SIGMETRICS Symposium
on Parallel and Distributed Tools, pages 1-10, Philadelphia, PA, May 1996. ACM.
B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin,
K. L. Karavanic, K. Kunchithapadam, and T. Newhall. The Paradyn parallel per-
formance measurement tool. IEEE Computer, 28(11):37-46, November 1995.
John K. Ousterhout. T¢l and Tk Toolkit. Addison Wesley, 1994.

R. Rajamony and A. Cox. A performance debugger for eliminating excess syn-
chronization in shared-memory parallel programs. In Proceedings of the 4th In-
ternational Workshop on Modeling, Analysis, and Simulation of COmputer and
Telecommunication Systems (MASCOTS), February 1996.

J. P. Singh, W. Weber, and A. Gupta. SPLASH: Stanford parallel applications for
shared memory. Computer Architecture News, 20(1):5-44, March 1992.

S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The SPLASH-2 programs:
Characterization and methodological considerations. In Proceedings of the 22nd
Annual International Symposium on Computer Architecture, pages 24-36, Santa
Margherita Ligure, Italy, June 1995. ACM.

This article was processed using the IATpX macro package with LLNCS style

