Notes on Sorting and Counting Networks
(EXTENDED ABSTRACT)

Nikos Hardavellas, Damianos Karakos and Marios Mavronicolas®

Department of Computer Science, University of Crete, and Institute of Computer
Science, Foundation of Research and Technology (FORTH), Heraklion 71110, Greece

Abstract. Implementing counting networks on shared-memory multi-
processor machines often incurs a performance penalty proportional to
the depth of the networks and the extent to which concurrent processors
access the same memory location at the same time. In this work, we
examine the dependence of performance on the width of the balancers
used in constructing such networks.

Our main result is a construction of counting networks (and, hence, sort-
ing networks) with perfect power width p", for any integers p > 2 and
k > 1. This construction is built on balancers of width p, and general-
izes in a novel way the periodic counting network of Aspnes, Herlihy and
Shavit [3], built on balancers of width 2. This result provides a partial
answer to a question of Aharonson and Attiya [1].

The depth of these networks is k2, thus implying decrease in depth of
counting networks through an increase in balancer width. Furthermore,
we provide a formal analysis of the performance of our construction as
measured by contention [8]. Through a novel use of recurrence relations,
we show that our counting networks incur a contention of @(nk? /p*~!)
in the presence of n concurrent processors. This bound implies a trade-off
between depth and contention.

1 Introduction

Counting networks were recently introduced by Aspnes, Herlihy and Shavit [3]
as a new approach for solving multi-processor coordination problems that can be
expressed as counting problems, i.e., problems where processes must cooperate to
obtain successive values from a given range. Typical examples of such counting
problems are the assignment of successive memory addresses and the robust
simulation of an asynchronous algorithm on a shared-memory multi-processor
architecture in a way that preserves causality of computation steps (see, e.g.,
1, 3)).

Roughly speaking, a counting network is a collection of shared variables,
called balancers, connected through wires. On a shared-memory multi-processor
machine, a balancer can be implemented by a CompareésSwap variable, and
a wire can be implemented by a memory address pointer. In more detail, a p-
balancer can be thought of as a p-input, p-output toggle. When an input appears

* Also with Department of Computer Science, University of Cyprus, Nicosia, Cyprus.

on one of its input wires, 1t takes the output wire to which the toggle is set, and
toggles the gate so that the input will leave on the next output wire. If the
balancer is initialized so that the first input to pass through will take the top
output wire, then, after m inputs have passed through the toggle, exactly [m/p]
will exit on the top output wire, and |m/p]| will exit on the bottom output wire.

One can connect a collection of balancers to form a balancing network much
in the same way a sorting network is obtained by connecting a collection of
comparators. This is done by connecting output wires from some balancers to
input wires of others. Some of the remaining unconnected input and output
wires are the input and output wires, respectively, of the network. Each request
for a value corresponds to a traversal of the network by a token, starting from
any input wire, following the pointer obtained by accessing the first balancer to
the next one, and so on. Clearly, the number of steps a token takes in order to
traverse the network is at most the depth of the network.

Let z; denote the number of tokens that have entered the network on the
tth input wire, 0 < ¢ < w — 1, where w is the width of the network. Similarly, y;
denotes the number of tokens that have left the network on the ith output wire,
0 < ¢ < w-—1. A balancing network of width w is a counting network if each
time the network becomes free of tokens, i.e., all entering tokens have exited,
0 <y —y <1, foranyij, 0<:<j<w—1 A smoothing network only
guarantees that |y; —y;| < 1, for any ¢,7, 0 <i,j <w— 1.

It has been argued quite convincingly [3] that counting networks comprise
the most appropriate solution to counting problems in situations where reduc-
ing the expected contention and enhancing the concurrency are of primary in-
terest. (Classical solutions based on implementing a counter by a single shared
Fetché9 Add variable suffer from serious performance degradation, because of syn-
chronization bottlenecks and high memory contention.) Indeed, counting net-
works have been successfully used in diverse applications such as implementing
a producer/consumer buffer, and barrier synchronization [3].

Unfortunately, all to date known constructions of counting networks have
fan-out p2*, for any integers p, k > 1, using 2-balancers or p-balancers [1, 3].
Although, for sorting networks, “padding” can be used to transfer a sorting
network of fan-out n’ > n into a sorting network of fan-out n, a similar idea would
not work for counting networks. Hence, to meet width specifications imposed by
specific applications, the question arises of providing general constructions of
counting networks with arbitrary width, using a fixed set of balancer types.

In this work, we consider a very special case of the previous question, orig-
inally posed in [1]. More specifically, we address the problem of constructing
counting networks with width p*, for any integers p > 2 and k > 1, using p-
balancers. Our main result is a construction that generalizes the periodic count-
ing network of Aspnes, Herlihy and Shavit [3], built on 2-balancers. (In turn,
this network is based on the periodic balanced sorting network of Dowd, Perl,
Rudolph and Saks [7].) This is achieved through an appropriate generalization
of the combinatorial notions of chains and cochains (originally introduced in [7]
and subsequently used in [3]) to accomodate the use of p-balancers.

This construction implies a reduction in the depth of counting networks
through increasing the width of the used balancers. At this point, it is natural
to ask whether this depth reduction is not overpaid by an increase in contention,
the extent to which concurrent processors access the same memory location at
the same time. We provide a rigorous analysis of a formal complexity measure
of contention, introduced by Dwork, Herlihy and Waarts [8]. We use recurrence
relations to show that our construction incurs a contention of @(nk?/p*~1) in
the presence of n concurrent processors. This bound implies that decreasing £,
hereby reducing depth, may not always result in improving performance, and

suggests a trade-off between depth and contention, parameterized by p.

As a case study, we present several new sorting networks of width 9, built
on 3-comparators. The balancing duals of these networks, obtained by replacing
each 3-comparator with a 3-balancer, are conjectured to be counting networks.
Larger counting networks can, however, be obtained from these balancing duals
by adjuncting them with smoothing networks of fan-in and fan-out 9, built on
3-balancers. These constructions significantly improve upon previous ones given
by Gerbessiotis [9] in both size and depth. More specifically, the sorting networks
in [9] use 15 comparators and achieve depth 5, while ours use 12 comparators
and achieve depth 4. Consequently, our counting networks of width 9 improve
upon corresponding ones in [9]. Furthermore, while the constructions in [9] are
quite ad-hoc and result in highly unstructured sorting and counting networks,
our networks seem to possess a fine order and structure making them more
amenable to generalization.

We believe that the techniques we used in our main construction should
be applicable to more general situations where balancers drawn from arbitrary
sets of balancer types are available. The ultimate goal of this research is to
identify general techniques of designing counting networks, given an arbitrary
set of balancers and a width specification, whenever that would be possible (cf.
[1]). We feel that our results constitute a modest intermediate step towards this
general goal.

As a by-product, the comparison duals of our counting networks of width
p*, p > 2 and k > 1, provide the first known family of sorting networks that
completely avoids the use of 2-balancers and does not rely on “padding”. (See,
however, [2] for a discussion of the advantages of using k-comparators in con-
structing halvers and ezpanders, general building blocks of sorting networks,
and [14] for a sorting algorithm based on three-way comparisons.)

The rest of this paper is organized as follows. In Section 2, we describe bal-
ancing, smoothing and counting networks. In Section 3, we present our main
construction, while experimental performance results for this construction are
outlined in Section 4. Our constructions of sorting, smoothing and counting net-
works of width 9 are included in Section 5. We conclude, in Section 6, with a
discussion of our results and directions for further research.

Due to lack of space, the details of some of our definitions and proofs are
omitted.

2 Counting Networks

In this section, we describe smoothing and counting networks; our presentation
is patterned after those in [1, 3, 8].

Counting and smoothing networks belong to a larger class of networks called
balancing networks, constructed from wires and computing elements called bal-
ancers. The construction is similar to that of comparison networks from wires
and comparators (see, e.g., [6, 13]). We begin by describing balancing networks.

For each integer p > 2, a p-balancer is a computing element with p input
wires and p output wires. Tokens may arrive on any of the p-balancer’s input
wires and at arbitrary times. Intuitively, a p-balancer is a toggle mechanism,
which, given a stream of input tokens, sends them to output wires 0,1,...,p—1,
in that order and in a cyclic way; thus, a p-balancers effectively balances the
number of tokens that have been output on its output wires. Denote by z; and
¥i, 0 < i < p—1, the number of input tokens ever received on the p-balancer’s
tth input wire, and the number of tokens ever sent out on its ¢th output wire,
respectively. Throughout the paper, we will abuse this notation and use #; (resp.,
y;) both as the name of the i¢th input (resp., output) wire and the count of the
number of input (resp., output) tokens received (resp., sent out) on the wire.

Let the state of a p-balancer at a given time be defined as the sets of tokens
on its input and output wires. A state of a p-balancer is quiescent if Zf:_ol x; =

Zf:_ol y;; that is, the number of tokens that entered the balancer is equal to
the number of tokens that left it. The following formal safety, liveness and step
properties are required for a p-balancer: (1) In any state, Zf:_ol x; > Zfz_ol Ui
(i.e., a p-balancer never creates output tokens), (2) given any finite number of
input tokens m = Zf:_ol x; to the p-balancer, the p-balancer reaches within a
finite amount of time a quiescent state (i.e., a p-balancer never “swallows” input
tokens); in any such quiescent state, 5;:—01 y; = m, and: (3) in any quiescent
state, 0 <y; —y; <1 for any pair of i and j, 0 <i < j <p—1 (i.e., the output
has the step property).

Let P ={p1,p2,-..,px} be a set of positive integers. A balancing network of
width w over P is a directed graph with three kind of nodes: w source nodes,
w sink nodes, and some finite number of inner nodes. Source nodes represent
the input wires and sink nodes represent the output wires. Inner nodes represent
the p-balancers of the network; directed edges between inner nodes represent the
wires. Each inner node corresponds to a single p-balancer, for some p > 2, and
has in-degree equal to out-degree; call it degree. The size of a balancing network
is defined as the total number of its inner nodes (i.e., balancers). Assume there
are m inner nodes and denote by a;,7 = 1, ..., m, the degree of the ith node. It
is required that a; € P. The depth of a wire y, depth(y), is defined to be zero
if y is an input wire of the network, and max;cpg ,—172; + 1, if y is an output
wire of a p-balancer with input wires xg,21,...,x,_1. The depth of a balancing
network B, depth(B), is the maximal depth of any wire.

The state of a balancing network is defined as the collection of states of all its
component balancers. A state of a balancing network is guiescent if Z;U:_Ol x; =

Z;U:_Ol y;; that is, the number of tokens that entered the network is equal to the
number of tokens that left it. The safety and liveness properties of a balancing
network follow naturally from its definition and the safety and liveness properties
of a p-balancer: (1) in any state, Z;U:_Ol x; > Z;U:_Ol y; (i.e., a balancing network
never creates output tokens). (2) given any finite number of input tokens m =
Z;U:_Ol x; to the network, the network reaches within a finite amount of time
a quiescent state (i.e., a network never “swallows” input tokens). In any such
quiescent state, Z;U:_Ol Y = m.

On an MIMD shared-memory multi-processor machine, a balancing network
is implemented as a shared data structure, where balancers are records and wires
are pointers from one record to another. Each of the machine’s n asynchronous
processors runs a program that repeatedly traverses the data structure from
some input pointer to some output pointer, each time shepherding a new token
through the network. Tokens generated by processor p enter the network on input
wire p mod w. The limitation on the number of concurrent processors implies a
limitation on the number of tokens concurrently traversing the network at any
given time: Z;U:_Ol z; — Z;U:_Ol ¥ < n.

A counting network of width w over P is a balancing network of width w over
P for which, in any quiescent state, 0 <y; —y; <1,forany¢,5,0<i<j<w—-1
(this is the step property). A smoothing network of width w over P is a balancing
network of width w over P for which, in any quiescent state, |y; — y;| < 1 for
any 7,7, 0 <1i,j <w—1. That is, in any quiescent state the number of tokens on
each output wire is one of two consecutive integer numbers. Clearly, a counting
network is also a smoothing network.

Consider an execution of a counting network entering a quiescent state after
m tokens pass through it. Each time a token passes through a balancer, a stall
is charged to all tokens currently on input wires of the balancer. The (m,n)-
contention of a counting network N, Cpm (N, is the worst-case number of stalls
charged during an execution of a counting network at concurrency n in which
m tokens traverse and finally exit the network. The amortized n-contention of a
counting network N, C,(N), is the (m, n)-contention of N divided by m.

Denote by DS the balancing dual of a sorting network 8, i.e., the isomorphic
network obtained from & by replacing each comparator with a balancer.

3 Periodic Counting Networks with Perfect Power Width

We present a general construction of a counting network PERIODIC[pF] with
perfect power width p*, for any integers p > 2 and k > 1.

We start with definitions for p-chains and p-cochains, patterned after those
in [7] modified to accomodate p-balancers.

Consider a sequence X = zg,#1,...,2,_1. We represent each index (sub-
script) of a term in X as a p-ary string, i.e., a string over {0,1,...,p — 1}
representing the index in the p-ary arithmetic system. In our discussion, we will
use terms, indices, and representations of indices interchangeably.

The level 0 p-chain of X is X itself. For any integer ¢ > 1, a level ¢ p-chain
of X is a subsequence of X whose indices have the same ¢ low-order p-ary digits.
There are, for each integer i > 0, p’ level ¢ p-chains of X. For i > 1, the level
¢ p-chain of X corresponding to the ¢ low-order p-ary digits p;p;_1...p; will be
denoted as XP:Pi=1-P1 In particular, X°, X' ..., XP~1 denote the level 1 p-
chains of X, namely, the subsequences of X of terms with indices 0,1,...,p—1
modulo p, respectively. Let C be a set of p-chains of X. The p-cochain of X
defined by C, X, is the subsequence of X consisting of all terms of p-chains
in C. Of special interest are p-cochains of X defined by certain combinations
of level 2 p-chains of X. Specifically, let Co = {X0 X1 . Xxp-le=11 ¢ —
{X0, x12 XP=1OY through C,q = {XOP~1 XP=lr=2 X190} Each of
these sets of p-chains of X defines a corresponding p-cochain of X. These p-
cochains, denoted by X, X¢ through X¢-1, will be called the special p-
cochains of X. Notice that, by definition of special p-cochains, X% € C;, if and
only if j = (¢ 4+ k) mod p. Our first lemma reveals the close relationship between
p-chains and p-cochains.

Lemmal. For each integer i > 1, a subsequence of X s a level i p-chain of X
of and only of 1t is a level i — 1 p-chain of one of the special p-cochains of X .

The next lemma establishes a trivial step property of level 1 p-chains.

Lemma 2. Assume | is ¢ multiple of p. If the sequence X = xg,xq1,...,2;_1 has
the step property, then the sums of terms in the level 1 p-chains of x, X°, X1,
through X?~', are within 1 of each other.

Define the balancing network BLocK[p*] as follows. When k is equal to 1,
the network BLocK[p*] consists of a single p-balancer. For larger values of k,
the network BLocK[p*] is constructed recursively. We start with p networks
Brock[p*~1] denoted by Ny, Nj, through N,_;. Given an input sequence z,
the input to A; is z€¢, where 0 < i < p — 1. Let ¢ be the output sequence
for the network Aj, 0 < i < p — 1. The final stage of the network BLock[p*]

combines each p-tuple y]C”, y]Cl, through yfp_l
outputs z,;, 2,541, through z,;4, 1, 0 < j < p*~1 — 1. The balancing network
PERIODIC[p*] consists of k balancing networks BLocK[p*] joined so that the i-th
output wire of one is the i-th input wire of the next, 0 < i < p* — 1. Figure 1
shows the balancing network PERIODIC[9].

We show that PERIODIC[p*] is a counting network. Our first lemma general-

izes Lemma 4.2 in [3] to accomodate p-balancers.

in a single p-balancer, yielding final

Lemma 3. Assume each of the sequences (9, 2V through =Y has the step

property, and p-tuples J:E»O)

puts yl(»o), yl(»l) and yl(»p_l). Then, each of the sequences y(©, yV) . through y®=1

has the step property.

, l‘gl), through xgp_l) enter a p-balancer yielding out-

We next show:

Fig. 1. The balancing network PERIODIC[9]

Lemmad4. Let BLOCK[p*] be quiescent. If each of x°, ', through x*~' has the
step property, so does z.

Proof: By induction on k.

For the base case, where k = 1, BLOCK[p*] is a single p-balancer, whose out-
put y is guaranteed, by the definition of a p-balancer, to have the step property.

For the induction step, assume the property for BLock[pF~1], k& > 1, and
consider the network BLoCK[p*]. Denote by y“' the output sequence of the net-
work A7, 1 <1 < p— 1, being itself a network Brock[pF~1]. In the full version
of the paper, we show that for each {, 0 <1 < p — 1, y“* has the step property,
and then we show the step property for z by case analysis. [|

Lemma 5. Let BLOCK[p*] be quiescent with input sequence x and output se-
quence y. For each integer 1 > 1, if all the level i p-chains of x have the step
property, then so do all the level i — 1 p-chains of y.

Proof: By induction on i.

The base case, where ¢ = 1, is established in Lemma 4. For the induction
step, assume the property for input p-chains of level at most i. Let x be the
input sequence to BLoCK[p*], 2, 2¢1, through 27— the output sequences of
the p nested BLoCK[p*~1] networks Ao, N7, through Np_1, z the concatenation
of 2¢, 2€1, through 2¢»-1, and y the output sequence of BLocK[p*].

For ¢ > 1, Lemma 1 implies that every level ¢ p-chain of z is entirely contained
in one of the special p-cochains z¢°, 21, through z°»-* of . Consider, without
loss of generality, any level ¢ p-chain of x entirely contained in . By Lemma 1,
any such p-chain is a level i — 1 p-chain of 24, and has, by hypothesis, the step
property. Hence, by induction hypothesis, all level i — 2 chains of z°° have the
step property. Similarly, all level i — 2 p-chains of 21, through 2C»-' have the
step property. It follows, by Lemma 1, that all level ¢ — 1 p-chains of z have the
step property. Hence, Lemma 3 implies that all level ¢ — 1 p-chains of y have the
step property, as needed. [|

As an immediate consequence of Lemma 5, it follows:
Theorem 6. PERIODIC[p*] is a counting network.

We remark that the special p-cochains 20, through 2¢»=1 could be defined as,
e.g., Co = {0, ' P~ . 2P=11} through €,y = {a0F~1 gtP=2 | gp=10}
while still preserving the shown properties of p-chains and p-cochains, and lead
to an isomorphic construction. (The reader is encouraged to verify this.) Becker,
Nassimi and Pearl [5] present interesting generalizations of special 2-cochains,
calling them g-chains, and use them to construct large classes of sorting net-
works out of 2-balancers. It is an important combinatorial question to collect all
generalizations of special p-cochains, for any integer p > 2, in a systematic way,
and use them to obtain new (periodic) counting networks with perfect power
width p*, k > 2. (In fact, it may be that many of our networks of width 9,
presented in section 5, are just instances of such generalizations.)

For each k > 1, let depth(BLock[p*]) and depth(PERIODIC[p*]) denote the
depths of the networks BLock[p*] and PERIODIC[p*], respectively. For k > 2,

depth(PERIODIC[p*]) = k depth(Brock[p*]) = k(depth(Brock[p*~1])+ 1),
with depth(PERIODIC[p]) = depth(BLOCK[p]) = 1. Hence, it follows:
Theorem 7. depth(PErIODIC[p*]) = k2%, k> 1.

We proceed to show a tight contention bound for PERIODIC[p*].

Theorem 8. C,(PERIODIC[p]) < (3 — 1)k

Proof: Since the PERIODIC[p*] network consists of k cascaded BLoCK[p*] net-
works, we have:

Cn(PERIODIC[pY]) < k- Cp(BLOCK[pF]) .
Hence, it suffices to prove:

Lemma 9. Cmyn(BLOCK[pk]) < (pk"—_1 — Dkm
Proof: Let LADDER[p*] be the largest leftmost subnetwork of BLocKk[p*] that
has depth 1.

Observe that BLOCK[p*] consists of LADDER[p*] followed by p “parallel”
BLock[p*~!] networks. Notice that, by construction, each of the p-balancers in
LADDER[p*] equidistributes tokens in each of the BLocK[p*~!] networks; hence,
the concurrency of each of these networks is n/p. Hence, it follows:

p—1
Crnn(BLOCK[p*]) = Cpn ,(LADDER[pF]) + Zcm“%(BLOCK[pk_l]) ,
=0
where m; is the number of tokens fed through the ith BLock [p*~1] subnetwork,
0 < i < p—1, out of the m tokens fed through BLocK[p*]; clearly, >F_, m; = m.
We start by showing:

Claim 10. C,, ,(LADDER[p"]) < (7 = m

Proof: Notice that LADDER[p*] consists of p*~! “independent” p- balancers
with concurrency % per input line, and, hence, total concurrency 5. Each
token passing through one of the p-balancers may cause 1nsta11at10n of up to
. Hence, the total number of stalls due to m tokens is at most

(pkn—l -]‘)m' | |

Claim 10 implies:

p—1
Conn(BLOCK[pH]) < (e — 1)+ > Con,,n (BLOCK[p=1])
p =0 !

By iteration, it follows:

Cm n (BLOCK[p*])
n p—1 n p—1
< (5 —Dm + Z((%—l)mi + Zcm”,%(BLOCK[Pk_z])
p =0 p =0 ¥
n n p—1 p—1p-1
= (g = Dm 4 (g =D mi +)Y Cmyy, 2 (BLook[pF =)
p p =0 =0 =0
n p—1p-—1
= (55— 1)2m + > Com,, = (BLock[pF~2)
p =0 =0 ¥
< .
p—1p—1 -

< (p —Dk=1m + DD Zcmw ir

i=0 ¢=0 i=0
| SR —

= _(BLock[p])

k-1 times
Note, however, that Cy, , _ s o _(Brock[p]) is the contention due to m;_1);
tokens traversing a p-balancer Wlth concurrency - —2+. Arguing as in the proof
of Claim 10,
PF-T n
Cm(k_1)upk_1 (BLOCK[])]) < (1—1 1)m(k—1)z = (F - 1)m(k—1)z

p

Hence,

p—1p-—1

Cm n(BLOCK[pF]) < (pkn_1 —1)(k—1Lym+(ZZ Z_:m(k—l)i

i=0 ¢=0 =0

k—1 times

as needed. [|

Hence,
n

pk—l

as needed [|

Cn(PERIODIC[pF]) < (— 1)k?

In the full version of the paper, we show that the worst-case contention bound
shown in Theorem 8 is tight by describing an execution, in which tokens traverse
“sequentially” the sequence of the k cascaded BLOCK [p*] networks, attaining this
bound.

4 Performance

We implemented a software simulation of periodic counting networks in a general
asynchronous multiprocessor. Using this simulation, we investigated the depen-
dence of the typical amortized contention of these networks on factors such as
the width of the used balancers, the depth of the network and the concurrency
(number of processors).

This simulation helped us evaluate the performance of periodic counting net-
works as measured by contention. Throughout, our experimental results verified
the linear dependence of contention on concurrency, formally shown in section 3.
In more detail, maintaining constant depth, we observed improvement in per-
formance under an increase in the balancer’s width. This improvement should
provide an excellent testbed for the comparison of our constructions to corre-
sponding existing ones built up solely of 2-balancers. Furthermore, maintaining
constant balancer’s width, we observed corresponding improvement under an
increase in depth. Most important, we observed a significant deviation of typical
(contention) performance from the worst-case one following from our contention
analysis: typical contention was found to be only about 10% of the worst-case
one! Typical experimental performance results appear in Figure 2.

[Concurrency 3 [6 [9 [12 [15 [18 [21 [24 [27 [30 [33 [36 |
PERIODIC[4] [0.59 [1.84 [3.09 [4.43 [5.87 [7.33 [8.58 [10.04[11.16]12.37[13.85[15.31
Periopic[8] [0.35 [0.75 [1.19 [1.73 [2.21 [2.91 [3.51 [4.25 [4.78 [5.40 [6.24 [6.74
PERrIODIC[9] [0.79 [1.15 [1.81 [2.85 [3.65 [4.50 [5.47 [6.42 [7.11 [8.00 [8.86 [9.83
PERIODIC[27][0.27 [0.70 [0.98 [1.34 [1.63 [1.89 [2.07 [2.28 [2.54 [2.77 [2.96 [3.14

|Concurrency 42 [45 [48 |51 [54 |57 [60 63 [66 69 [72 [75 ||
PERIODIC[4] [17.66[19.17]20.60]21.22[22.66]23.16]24.64]25.43|27.37]28.42(29.03[30.19
PERIODIC[8] |8.24 [8.76 [9.66 |10.21[10.87|11.53[12.07]13.0213.61[14.10|14.86]15.49

PERIODIC[9] [11.62(12.11|13.02(13.85|15.04|15.67|16.48|17.34(18.2918.05|20.03|20.49
PERIODIC[27](3.54 (3.68 |3.96 |4.18 |4.30 |4.64 |4.77 [5.07 |5.21 [5.44 |5.80 |5.94

Fig. 2. Experimental values for typical amortized contention

Due to lack of space, a complete description of our simulation methodologies
and discussion of the results is deferred to the full version of the paper.

(a) S&%XQ

(b) ngQ

Fig. 3. The sorting networks Sa, o and SZ, o

5 Sorting and Counting Networks with Width 9

We present constructions for 5 new sorting networks of width 9, 8.4, through
859 These networks are depicted in Figures 3, and 4. Our constructions result
from systematically permuting small “smooth-like” building blocks of width 9.

4 1 2 3 4 5
Theorem 11. The comparison networks Sgy g, Sixgr Soxgs Soxg and S5y g are
sorting networks.

Proof: It has been verified by using a computer program that each of these
networks sorts all Boolean sequences of length 9. The result follows from the 0-1
sorting principle [6, 13]. []

Notice that each of 83, o through S5, 4 achieves depth 4 and size 12. In fact,
83,9 can be modified to achieve size 11 by eliminating the (redundant) 7th
comparator from left to right. At the time of writing, we do not know whether
or not 11 can be further reduced. We have run several simulation tests by feeding
tokens into randomly selected input wires of the balancing dual of each of Sa. 4
through S5, 4. None of these tests violated the counting property. This leads us
to formulate the following conjecture.

Conjecture12. The networks DSQXQ, 1 < i <5, are counting networks.

(a) 893><9

(b) ngQ

(C) ngQ

Fig. 4. The sorting networks S, g, Sayo and S5

The balancing network MJ, 4, depicted in Figure 5(a), has been introduced
by Gerbessiotis [9].

Lemma 13 (Gerbessiotis, [9]). MJ,q s a smoothing network.

Since, as observed in [3], smoothing + sorling = counling, it immediately
follows:

Theorem 14. The networks MéXQDSQXQ, 1 <i<5, are counting networks.

We slightly permute the smoothing network MJ, 4 to obtain a balancing
network M3, o, depicted in Figure 5(b). In the full version of the paper, we

(a) Méx&)

(b) MSZ)XQ

Fig. 5. The smoothing networks M3, o and M2, 4

show:
Theorem 15. The network M2, is a smoothing network.
Hence, it follows:

Theorem 16. The networks /\/lgngngg, 1 <i<5, are counting networks.

6 Discussion and Directions for Further Research

Generalizing the periodic counting network of Aspnes, Herlihy and Shavit [3], we
presented a general construction of a counting network with width p*, for any
integers p > 2 and k > 1, using p-balancers. Our construction relies heavily on an
appropriate generalization of the combinatorial notions of chains and cochains.
This construction enhances the class of currently known constructible counting
networks.

Through a rigorous analysis based on recurrence relations, we revealed an
interesting trade-off between depth and contention incurred by our construc-
tion. We verified and further evaluated our theoretical bounds on contention by
experimental means.

We also presented size and depth economical sorting networks with width 9,
built on 3-comparators, and associated counting networks, built on 3-balancers,
improving upon previous constructions of Gerbessiotis [9].

Our work leaves open several interesting questions. Can the bitonic counting
network in [3] be generalized to accomodate p-balancers and achieve width p*,
k > 1?7 How about the “small-depth” counting networks in [12]7 Aharonson and
Attiya [1] present techniques for constructing counting networks of fan-in and
fan-out ¢2%, for any integers ¢,k > 1, using 2-balancers and g-balancers. Can
their techniques be combined with our construction to yield a counting network
of width ¢p*, for any integers p > 2 and ¢, k > 1? More generally, the following
question of Aharonson and Attiya [1] remains as yet unsettled: For any integers p
and ¢, p, ¢ > 2, how can a counting network of width pg be built from p-balancers
and g-balancers? We are currently investigating the possibility of building such
networks using our periodic constructions as main building blocks, and we have
obtained some preliminary results.

We believe that the use of recurrence relations for analyzing contention, ini-
tiated by our work, is quite promising and should be applicable elsewhere. Can
the contention bound for the bitonic counting network shown in [8] be obtained
through formulating and solving an appropriate recurrence relation? Further-
more, the contention bound for the periodic counting network has been shown
to be tight for every p > 2. (In [8], a corresponding bound for the special case
p = 2 is reported.) Dwork, Herlihy and Waarts [8] suggest the study of con-
tention of counting networks in general (as opposed to studying the contention
of specific constructions). Does there exist a counting network achieving a better
trade-off between depth and contention than ours?

Counting networks have recently attracted a lot of flourishing interest and
attention [1, 3, 8, 10, 11, 12]. Our results further the applicability of the cur-
rently known techniques for constructing and analyzing the performance of such
networks. Clearly, we have barely scratched the surface of this rich subject, with
the vast bulk of the interesting results remaining yet to be discovered.

Acknowledgments: We are grateful to Hagit Attiya for many helpful sugges-
tions and comments, and, especially, for raising questions on contention.

References

1.

10.

11.

12.

13.

14.

E. Aharonson and H. Attiya, “Counting Networks with Arbitrary Fan-Out,” in
Proceedings of the 3rd ACM-SIAM Symposium on Discrete Algorithms, pp. 104—
113, January 1992.

M. Ajtai, J. Komlos and E. Szemeredi, “Halvers and Expanders,” in Proceedings
of the 33rd Annual IFEE Symposium on Foundations of Computer Science, pp.
686-692, October 1992.

J. Aspnes, M. Herlihy and N. Shavit, “Counting Networks and Multi-Processor
Coordination,” in Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, pp. 348-358, May 1991. Expanded version: “Counting Networks,”
Technical Memo MIT/LCS/TM-451, Laboratory of Computer Science, MIT, June
1991.

K. E. Batcher, “Sorting Networks and their Applications,” in Proceedings of
AFIPS Joint Computer Conference, 32, pp. 338-334, 1968.

. R. Becker, D. Nassimi and Y. Perl, “The New Class of g-Chain Periodic Sorters,”

in Proceedings of the 5th Annual ACM Symposium on Parallel Algorithms and
Architectures, July 1993.

T. Cormen, C. Leiserson and R. Rivest, Introduction to Algorithms, Mc-Graw Hill
and MIT Press, 1990.

M. Dowd, Y. Perl, L. Rudolph and M. Saks, “The Periodic Balanced Sorting Net-

work,” Journal of the ACM, Vol. 36, No. 4, pp. 738-757, October 1989.

C. Dwork, M. Herlihy and O. Waarts, “Contention in Shared Memory Algo-

rithms,” in Proceedings of the 25th Annual ACM Symposium on Theory of Com-
puting, May 1993.

A. Gerbessiotis, “Sorting and Counting Networks,” unpublished manuscript, Har-

vard University, October 1992.

M. Herlihy, B.-C. Lim and N. Shavit, “Low Contention Load Balancing on Large-

Scale Multiprocessors,” in Proceedings of the 4th Annual ACM Symposium on Par-
allel Algorithms and Architectures, July 1992.

M. Herlihy, N. Shavit and O. Waarts, “Low Contention Linearizable Counting Net-

works,” in Proceedings of the 32nd Annual IEEF Symposium on Foundations of
Computer Science, pp. 526-535, October 1991.

M. Klugerman and C. Plaxton, “Small-Depth Counting Networks,” in Proceedings
of the 24th Annual ACM Symposium on Theory of Computing, pp. 417-428, May
1992.

D. Knuth, Sorting and Searching, Volume 3 of The Art of Computer Programming,
Addison-Wesley, 1973.

S. S. Tseng and R. C. Lee, “A new Parallel Sorting Algorithm Based upon Min-

Mid-Max Operations,” BIT, Vol. 24, pp. 187-195, 1984.

This article was processed using the INTpX macro package with LLNCS style

